文章编号 1672-6634(2021)02-0014-12

DOI 10.19728/j.issn1672-6634.2021.02.003

PDEs 对单向二维 CCA 的影响

陈柯鑫,范丽亚

(聊城大学 数学科学学院,山东 聊城 252059)

摘 要 累计贡献率(CCR)决定着降维子空间的维度,贡献率越高,维度越大,计算成本也越高,但对图像的识别精度来说却并不一定越好。利用单向二维典型相关分析(2D-CCA)进行图像特征抽取时面临的 CCR 如何选取问题,目前还没有一个有效的解决方案。偏微分方程组(PDEs)与一维典型相关分析(CCA)的算法结合并没有解决 CCA 存在的会破坏图像的空间结构,丢失图像的判别信息以及造成"维数灾难"等问题。为解决上述问题,提出了将 PDEs 与单向 2D-CCA 结合的一体化学习算法,着重研究了 PDEs 对 2D-CCA 中 CCR 的影响。在 AR 数据集、FRGCv 数据集上的实验以及对比实验的结果表明 PDEs 的进化不仅可以弱化 2D-CCA 中 CCR 的选择,甚至不用考虑 CCR 的选择,原则上不超过 5 次的进化可达到最优识别精度,且识别精度明显优于基于 PDEs 的一维 CCA 算法。

关键词 图像识别;二维典型相关分析;偏微分方程;累积贡献率;进化次数 中图分类号 TP391 文献标识码 A

开放科学(资源服务)标识码(OSID)

Effects of PDEs on One-directional Two-dimensional CCA

CHEN Kexin, FAN Liya

(School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China)

Abstract The CCR determines the dimension of the reduced subspace, the higher the contribution rate is, the larger the dimension is and the higher the calculation cost is. However, it is not necessarily better for the image recognition accuracy. The selection problem of cumulative contribution rate(CCR) has to faced by using one-directional two-dimensional canonical correlation analysis(2D-CCA) for image feature extraction, and there is no effective solution at present. The combination of PDEs and one-dimensional canonical correlation analysis(CCA) does not solve the problems of CCA, such as destroying the spatial structure of the image, losing the discrimination information of the image and causing the "dimension disaster". To solve the above problems, an integrated learning algorithm combining PDEs with one-directional 2D-CCA is proposed, and the influence of PDEs on CCR in 2D-CCA is emphatically studied. The experimental results on AR dataset and FRGCv dataset and comparative experiments show that the evolution of PDEs can not only weaken the choice of CCR in 2D-CCA, but also do not need to consider the choice of CCR. In principle, no more than five evolutions can achieve the best recognition accuracy, and the recognition accuracy is obviously better than that of one-dimensional CCA algorithm based on PDEs.

Key words image recognition; two dimensional canonical correlation analysis; partial differential equations; cumulative contribution rate; evolution times

收稿日期:2020-10-02

基金项目:国家自然科学基金项目(11801248);山东省自然科学基金项目(ZR2016AM24,ZR2018BF010)资助

通讯作者:范丽亚,女,汉族,博士,教授,研究方向:机器学习理论与应用,E-mail:fanliya63@126.com。

0 引言

对高维噪声(光暗、有遮挡)图像的识别任务,清洗图像以及抽取图像的有效特征是高质量完成任务的关键。图像特征抽取的本质是找到高维图像有意义的低维表示。近年来,有关图像特征抽取方法的研究成果颇丰,如:主成分分析(Principal Component Analysis,PCA)^[1]、线性判别分析(Linear Discriminant Analysis,LDA)^[2]、典型相关分析(Canonical Correlation Analysis,CCA)^[3,4]等。PCA和LDA主要是针对图像的一组特征进行抽取的,而CCA考虑了图像两组特征间的线性相关性。但利用CCA进行图像特征抽取时首先需要将图像重塑为向量数据,这种重塑可能会破坏图像的空间结构,丢失图像的判别信息以及造成"维数灾难"。为了解决这一问题,孙权森^[5]于2006年提出了单向二维CCA(One-directional Two-dimensional CCA,2D-CCA),它直接利用图像(矩阵数据)作为输入,而不需要将其重塑为向量数据。与CCA相比,2D-CCA中所构造的协方差矩阵的维数明显下降,这大大降低了2D-CCA的计算成本^[6]。近年来2D-CCA也得到了广泛的应用,如多分辨率SAR图像目标识别^[7]、fMRI数据分析^[8]等。CCA和2D-CCA是模型矩阵CCA(Model Matrix CCA,M-CCA)的两种不同解决方案,2D-CCA是M-CCA中权矩阵W_x与W_y的秩为1的情况^[9]。类似于经典CCA,2D-CCA也存在累计贡献率(Cumulative Contribution Rate,CCR)如何选取的问题。CCR决定着降维子空间的维度,贡献率越高,维度越大,计算成本也越高,但识别精度并不一定越好。

目前,针对高维噪声(光暗、有遮挡)图像的识别任务,为了达到高识别度,常用两类特征抽取方法,一类 主要用于降低图像中的噪声(降噪),但起不到降维作用;另一类主要用于降维,减少计算成本,但降噪作用 不明显。Fang等人^[10]于2017年首次提出了基于偏微分方程组(Partial Differential Equations, PDEs)的图 像特征提取方法(简称 Fang 方法),该方法主要用于降低图像中的噪声,没有降维作用。江等人^[11]研究了 Fang 方法中 PDEs 的进化次数以及压缩函数的压缩速度对图像特征提取的影响。雷等人^[12]研究了 Fang 方法中 PDEs 的进化次数对经典 CCA 中 CCR 的影响,王等人^[13]研究了 Fang 方法中 PDEs 对 PCA,LDA, CCA 以及监督 CCA 四种经典数据降维方法的影响。此外,江^[14]等人还研究了 Fang 方法中 PDEs 的进化 对正则化支持向量机(Regularized Support Vector Machine, RSVM)中模型参数的影响。上述研究均为 PDEs 的应用以及 PDEs 与一维典型相关分析的结合,并没有规避掉 CCA 的缺点。

为解决基于 PDEs 的 CCA 算法仍会破坏图像的空间结构,造成"维数灾难"这一问题,本文提出了将 PDEs 与单向二维典型相关分析结合的一体化学习算法,着重研究 PDEs(作为降噪工具)对单向 2D-CCA (作为降维工具)中 CCR 的影响,其中以 SVM^[15](针对二类图像集)和一对余多类 SVM^[16](One-versus-Rest Multi-class SVM,OVR-MSVM,针对多类图像集)作为识别器,以识别精度作为衡量标准。通过在 AR 人脸数据集和 FRGCv 数据集上的大量实验以及与雷等人所提出算法的对比实验表明:(1) PDEs 的进化不仅可 以弱化 CCR 的选择,甚至可以不用考虑其选取,基本上通过不超过 5 次的 PDEs 进化即可达到同等条件下 的最佳识别精度;(2) 与雷等人所提算法相比,达到最佳识别精度所需 PDEs 的进化次数明显减少,且最佳 识别精度明显提高。

1 2D-CCA

本节简要回顾 2D-CCA,详细内容见文献[5,6]。2D-CCA 面向行数相同或列数相同的两组矩阵数据 集,本文只考虑行数相同列数不同的情况,用类似的方法可以讨论列数相同行数不同的情况。

给定两个图像集 $\{X_t \in \mathbb{R}^{m \times p}\}_{t=1}^{N}$ 和 $\{Y_t \in \mathbb{R}^{m \times q}\}_{t=1}^{N}$,N表示图像个数。用 $(X,Y) \in \mathbb{R}^{m \times p} \times \mathbb{R}^{m \times q}$ 表示任意 一对下标相同的图像。2D-CCA 是寻找一对典型投影方向 $w_x \in \mathbb{R}^p$, $w_y \in \mathbb{R}^q$ 使得投影后的典型变量 Xw_x 和 Yw_y 间保持极大相关性,可用下述优化模型表示

$$\max_{w_x, w_y} \rho = \frac{\operatorname{cov}(\boldsymbol{X}\boldsymbol{w}_x, \boldsymbol{Y}\boldsymbol{w}_y)}{\sqrt{\operatorname{var}(\boldsymbol{X}\boldsymbol{w}_x)\operatorname{var}(\boldsymbol{Y}\boldsymbol{w}_y)}} \,. \tag{1}$$

记

$$\begin{split} \overline{\mathbf{X}} &= m^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \in \mathbf{R}^{m \times p}, \overline{\mathbf{Y}} = m^{-1} \sum_{i=1}^{N} \mathbf{Y}_{i} \in \mathbf{R}^{m \times q}, \\ \mathbf{C}_{xx} &= \sum_{i=1}^{N} (\mathbf{X}_{i} - \overline{\mathbf{X}})^{\mathrm{T}} (\mathbf{X}_{i} - \overline{\mathbf{X}}) \in \mathbf{R}^{p \times p}, \\ \mathbf{C}_{xy} &= \sum_{i=1}^{N} (\mathbf{X}_{i} - \overline{\mathbf{X}})^{\mathrm{T}} (\mathbf{Y}_{i} - \overline{\mathbf{Y}}) \in \mathbf{R}^{p \times q}, \\ \mathbf{C}_{yy} &= \sum_{i=1}^{N} (\mathbf{Y}_{i} - \overline{\mathbf{Y}})^{\mathrm{T}} (\mathbf{Y}_{i} - \overline{\mathbf{Y}}) \in \mathbf{R}^{q \times q}, \\ \mathbf{C}_{yy} &= \sum_{i=1}^{N} (\mathbf{Y}_{i} - \overline{\mathbf{Y}})^{\mathrm{T}} (\mathbf{Y}_{i} - \overline{\mathbf{Y}}) \in \mathbf{R}^{q \times q}, \\ \mathbf{C}_{yx} &= \mathbf{C}_{xy}^{\mathrm{T}} \in \mathbf{R}^{q \times p} \,. \end{split}$$

显然 C_{xx}, C_{yy} 是对称非负定阵且

$$\operatorname{cov}(\boldsymbol{X}\boldsymbol{w}_{x},\boldsymbol{Y}\boldsymbol{w}_{y}) = E(\boldsymbol{X}\boldsymbol{w}_{x} - \overline{\boldsymbol{X}}\boldsymbol{w}_{x})^{\mathrm{T}}(\boldsymbol{Y}\boldsymbol{w}_{y} - \overline{\boldsymbol{Y}}\boldsymbol{w}_{y})$$

$$= N^{-1} \sum_{i=1}^{N} (\boldsymbol{X}_{i}\boldsymbol{w}_{x} - \overline{\boldsymbol{X}}\boldsymbol{w}_{x})^{\mathrm{T}}(\boldsymbol{Y}_{i}\boldsymbol{w}_{y} - \overline{\boldsymbol{Y}}\boldsymbol{w}_{y})$$

$$= N^{-1}\boldsymbol{w}_{x}^{\mathrm{T}} (\sum_{i=1}^{N} (\boldsymbol{X}_{i} - \overline{\boldsymbol{X}})^{\mathrm{T}} (\boldsymbol{Y}_{i} - \overline{\boldsymbol{Y}}))\boldsymbol{w}_{y} = N^{-1}\boldsymbol{w}_{x}^{\mathrm{T}}\boldsymbol{C}_{xy}\boldsymbol{w}_{y},$$

$$\operatorname{var}(\boldsymbol{X}\boldsymbol{w}_{x}) = E(\boldsymbol{X}\boldsymbol{w}_{x} - \overline{\boldsymbol{X}}\boldsymbol{w}_{x})^{\mathrm{T}} (\boldsymbol{X}\boldsymbol{w}_{x} - \overline{\boldsymbol{X}}\boldsymbol{w}_{x}) = N^{-1}\boldsymbol{w}_{x}^{\mathrm{T}}\boldsymbol{C}_{xx}\boldsymbol{w}_{x},$$

$$\operatorname{var}(\boldsymbol{Y}\boldsymbol{w}_{y}) = E(\boldsymbol{Y}\boldsymbol{w}_{y} - \overline{\boldsymbol{Y}}\boldsymbol{w}_{y})^{\mathrm{T}} (\boldsymbol{Y}\boldsymbol{w}_{y} - \overline{\boldsymbol{Y}}\boldsymbol{w}_{y}) = N^{-1}\boldsymbol{w}_{x}^{\mathrm{T}}\boldsymbol{C}_{yy}\boldsymbol{w}_{y},$$

于是,模型(1)可转化为

$$\max_{w_x,w_y} = \frac{w_x^{\mathrm{T}} \boldsymbol{C}_{xy} \boldsymbol{w}_y}{\sqrt{w_x^{\mathrm{T}} \boldsymbol{C}_{xx} w_x w_y^{\mathrm{T}} \boldsymbol{C}_{yy} w_y}} \,.$$
(2)

由于模型(2)不受范数 $\| w_x \|, \| w_y \|$ 的影响,所以可等价表示为

$$\max_{\mathbf{w}_{x},\mathbf{w}_{y}} \mathbf{w}_{x}^{\mathrm{T}} \mathbf{C}_{xy} \mathbf{w}_{y}$$
s.t. $\mathbf{w}_{x}^{\mathrm{T}} \mathbf{C}_{xx} \mathbf{w}_{x} = 1, \mathbf{w}_{y}^{\mathrm{T}} \mathbf{C}_{yy} \mathbf{w}_{y} = 1_{o}$
(3)

考虑模型(3)的 Lagrange 函数,并令
$$\partial L/\partial w_x = \partial L/\partial w_y = 0$$
,又由于 $w_x^T C_{xy} w_y = w_y^T C_{yx} w_x$ 于是

$$\begin{cases} \boldsymbol{C}_{xy} \boldsymbol{w}_{y} = \lambda \boldsymbol{C}_{xx} \boldsymbol{w}_{x}, \\ \boldsymbol{C}_{yx} \boldsymbol{w}_{x} = \lambda \boldsymbol{C}_{yy} \boldsymbol{w}_{y}, \end{cases}$$
(4)

为了避免矩阵 C_{xx} 和 C_{yy} 的奇异性,将其正则化,即用 $C_{xx} + tI_{p \times p}$ 替代 C_{xx} ,用 $C_{yy} + tI_{q \times q}$ 替代 C_{yy} ,其中 $t \ge 0$ 是正则化参数。若 C_{xx} 或 C_{yy} 是非奇异阵,则对应的 t = 0。于是由(4)式可得广义特征方程

$$\boldsymbol{C}_{xy}(\boldsymbol{C}_{yy}+t\boldsymbol{I}_{q\times q})^{-1}\boldsymbol{C}_{yx}\boldsymbol{w}_{x}=\lambda^{2}(\boldsymbol{C}_{xx}+t\boldsymbol{I}_{p\times p})\boldsymbol{w}_{x}.$$
(5)

为了求解方程(5),对矩阵 $C_{xx} + tI_{p \times p}$ 进行特征值分解(Eigen Value Decomposition, EVD): $C_{xx} + tI_{p \times p}$ = $U\sum_{x}U^{T}$,其中 $U \in \mathbb{R}^{p \times p}$ 是正交阵, $\sum_{x} = \text{diag}(\sigma_{1}, \dots, \sigma_{p})$ 且 $\sigma_{1} \ge \dots \ge \sigma_{p} > 0$ 是 $C_{xx} + tI_{p \times p}$ 的全部非零特征值。 记

$$\begin{cases} \boldsymbol{B}_{xy} = \sum_{x}^{-1} \boldsymbol{U}^{\mathsf{T}} \boldsymbol{C}_{xy} (\boldsymbol{C}_{yy} + t \boldsymbol{I}_{q \times q})^{-1} \boldsymbol{C}_{yx} \boldsymbol{U} \in \mathbf{R}^{p \times p} \\ \boldsymbol{B} = \sum_{x}^{-1/2} \boldsymbol{U}^{\mathsf{T}} \boldsymbol{C}_{xy} (\boldsymbol{C}_{yy} + t \boldsymbol{I}_{q \times q})^{-1/2} \in \mathbf{R}^{p \times q}, \\ \overline{\boldsymbol{w}}_{x} = \boldsymbol{U}^{\mathsf{T}} \boldsymbol{w}_{x}, \end{cases}$$

可得

$$\boldsymbol{B}_{xy} \overline{\boldsymbol{w}}_{x} = \lambda^{2} \overline{\boldsymbol{w}}_{x}, \qquad (6)$$

设 rank(B)=r≤min{p,q}。并对 B 进行奇异值分解(Singular Value Decomposition, SVD)

$$\boldsymbol{B} = \boldsymbol{P} \begin{bmatrix} \boldsymbol{\Sigma}_{B} & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{Q}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{P}_{1}, \boldsymbol{P}_{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{B} & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{Q}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{P}_{1} \boldsymbol{\Sigma}_{B}, 0 \end{bmatrix} \boldsymbol{Q}^{\mathrm{T}}$$

其中 $P = [P_1, P_2] \in \mathbb{R}^{p \times p}, Q \in \mathbb{R}^{q \times q}$ 是正交阵, $\Sigma_B = \text{diag}(\xi_1, \dots, \xi_r), \xi_1 \ge \dots \ge \xi_r > 0$ 是 B 的所有非零奇异值 且 $P_1 = [p_1, \dots, p_r] \in \mathbb{R}^{p \times r}$, 于是

$$\boldsymbol{B}_{xy} \sum_{x}^{-1/2} p_{i} = \boldsymbol{\xi}_{i}^{2} \sum_{x}^{-1/2} p_{i}, i = 1, \cdots, r_{\circ}$$
(7)

对比(6)和(7)两式,可知{ $(\boldsymbol{\xi}_{i}^{2}, \boldsymbol{w}_{xi})$ }^{*i*}_{*i*=1}={ $(\boldsymbol{\xi}_{i}^{2}, \sum_{x}^{-1/2} \boldsymbol{P}_{i})$ }^{*i*}_{*i*=1}是特征方程(6)的全部非零解。单向 2D-

CCA 寻找累积贡献率不小于 μ 的 d (d≤r) 对典型投影方向

 $\boldsymbol{w}_{xi} = \boldsymbol{U} \, \boldsymbol{w}_x = \boldsymbol{U} \sum_x^{-1/2} \boldsymbol{p}_i$,

 $w_{yi} = \xi_i^{-1} (C_{yy} + t I_{q \times q})^{-1} C_{yx} w_{xi} = \xi_i^{-1} (C_{yy} + t I_{q \times q})^{-1} C_{yx} U \sum_{x}^{-1/2} p_i, i = 1, 2, \cdots, d_o$

下面给出具体算法。

算法1 (2D-CCA)

步1 给定图像集 $\{X_i \in \mathbb{R}^{m \times p}\}_{i=1}^{N}$ 和 $\{Y_i \in \mathbb{R}^{m \times q}\}_{i=1}^{N}$,选择适当的正则化参数 $t \ge 0$ 和累积贡献率 μ (一般 0.8 $\le \mu \le 1$)。计算矩阵 C_{xy} , $C_{xx} + tI_{p \times p}$, $C_{yy} + tI_{q \times q}$,若 C_{xx} 或 C_{yy} 是非奇异阵,则对应的 t = 0。

步2 对矩阵 $C_{xx} + tI_{p \times p}$ 进行 EVD: $C_{xx} + tI_{p \times p} = U \sum_{x} U^{\mathsf{T}}$, 其中 $U, \sum_{x}, \sigma_1 \ge \cdots \ge \sigma_p > 0$ 如上所述。

步3 令 $B = \sum_{x}^{-1/2} U^{\mathrm{T}} C_{xy} (C_{yy} + t I_{q \times q})^{-1/2} \in \mathbb{R}^{p \times q}$ 且 rank(B)=r 《min{p,q}。

步4 对矩阵 B 进行 SVD: $B = [P_1 \Sigma_B, 0] Q^T$, 其中 $P_1, \Sigma_B, \xi_1 \ge \cdots \ge \xi_r > 0$ 如上所述。

步 5 若前 $d \leq r$ 个特征值对应的 CCR($\xi_1^2 + \cdots + \xi_d^2$)/($\xi_1^2 + \cdots + \xi_r^2$) $\geq \mu$,则取典型投影方向为

$$oldsymbol{W}_x = \left[oldsymbol{w}_{x1}, \cdots, oldsymbol{w}_{xd}
ight] = oldsymbol{U} \sum_x^{-1/2} \left[oldsymbol{p}_1, \cdots, oldsymbol{p}_d
ight] \in oldsymbol{R}^{p imes d}$$

$$\boldsymbol{W}_{y} = [\boldsymbol{w}_{y1}, \cdots, \boldsymbol{w}_{yd}] = (\boldsymbol{C}_{yy} + t\boldsymbol{I}_{q\times q})^{-1} \boldsymbol{C}_{yx} \boldsymbol{U} \sum_{x}^{-1/2} [\boldsymbol{\xi}_{i} \boldsymbol{p}_{1}, \cdots, \boldsymbol{\xi}_{d} \boldsymbol{p}_{d}] \in \mathbf{R}^{p\times d}.$$

步6 利用典型方向计算降维特征集 $\{X_t W_x \in \mathbb{R}^{m \times d}\}_{t=1}^N$ 和 $\{Y_t W_y \in \mathbb{R}^{m \times d}\}_{t=1}^N$ 。

从算法1中可以看出,CCR影响着降维特征集的维度,CCR越大,降维特征集的维度也越高,反之亦然。 降维特征集的维度又影响着算法的计算成本和图像的识别精度。因此,如何选择合理的CCR是一个急需解 决的问题。

2 SVM 与 OVR-MSVM

本节简要回顾作为二类数据分类器的线性 SVM 和作为多类数据分类器的线性 OVR-MSVM,详细内 容见文献[15,16]。

给定二分类数据集 $T = \{(x_i, y_i)\}_{i=1}^{m} \in \mathbb{R}^d \times \{\pm 1\}, 其中 y_i \in \{\pm 1\}$ 是第 *i* 个样本 $x_i \in \mathbb{R}^d$ 的类标签。用 $X = [x_1, \dots, x_m] \in \mathbb{R}^{d \times m}, D = \text{ding}(y_1, \dots, y_m) \in \mathbb{R}^{m \times m}$ 和 $y = (y_1, \dots, y_m)^T \in \mathbb{R}^m$ 分别表示样本矩阵、类标签 矩阵和类标签向量。线性 SVM 通过下面的二次规划模型

$$\min_{\boldsymbol{w},b,\xi_i} \frac{1}{2} \| \boldsymbol{w} \|^2 + C \sum_{i=1}^m \boldsymbol{\xi}_i$$
s.t. $y_i (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \geqslant 1 - \boldsymbol{\xi}_i, \boldsymbol{\xi}_i \geqslant 0, i = 1, \cdots, m,$
(8)

寻找分类决策函数 $f(x) = w^{\mathsf{T}} x + b$,其中 $w \in \mathbb{R}^d$ 和 $b \in \mathbb{R}$ 分别表示 f(x)的法向量和阈值,C > 0 是模型 参数, $\{\xi_i\}_{i=1}^m$ 是松弛变量, $\|\cdot\|$ 表示 l_2 -范数, $\langle\cdot,\cdot\rangle$ 表示内积。模型(8)的 Wolfe 对偶形式为

$$\min_{\alpha} \frac{1}{2} \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{\alpha} - \boldsymbol{e}_{m}^{\mathrm{T}} \boldsymbol{\alpha}$$
s.t. $\mathbf{y}^{\mathrm{T}} \boldsymbol{\alpha} = 0, 0 \leqslant \boldsymbol{\alpha} \leqslant \boldsymbol{C} \boldsymbol{e}_{m},$
(9)

其中 $\alpha \in \mathbf{R}^m_+$ 是 Lagrange 乘子向量, $G = DX^T X D \in \mathbf{R}^{m \times m}$ 是对称非负定阵, $e_m = (1, \dots, 1)^T \in \mathbf{R}^m_-$ 。通过求解 模型(9)得到分类决策函数的方法称为线性 SVM,下面给出具体算法。

算法 2 (线性 SVM)

- 步1 给定数据集 $T = \{(x_i, y_i)\}_{i=1}^m \in \mathbb{R}^d \times \{\pm 1\},$ 选取适当的模型参数 C > 0。
- 步2 求解模型(9),得最优解 $\alpha^* \in \mathbb{R}^m_+$ 。
- 步3 计算 $w^* = XDa^* = \sum_{i=1}^{m} a_i^* y_i x_i \in \mathbf{R}^d$ 。
- 步4 寻找 $\boldsymbol{\alpha}^*$ 的一个正分量 $0 < \boldsymbol{\alpha}_j^* < \boldsymbol{C}$,计算 $b^* = y_j < \boldsymbol{w}^*, \boldsymbol{x}_j > .$
- 步5 构造分类决策函数 $f(x) = \langle w^*, x \rangle + b^*$ 。
- 步6 对任一输入 $\tilde{x} \in \mathbb{R}^{d}$,其类标签可判断为 $y_{\tilde{x}} = \operatorname{sign}(f(\tilde{x})) = \operatorname{sign}(\langle w^{*}, \tilde{x} \rangle + b^{*})$ 。

给定 K(K ≥ 3) 类数据集 T = {(x_i, y_i)}^m_{i=1} ∈ R^d × {1, ..., K}, 第 i 类有 m_i 个样本且 $\sum_{i=1}^{K} m_i = m$ 。用 $\mathbf{X} = [x_1, ..., x_m] \in \mathbf{R}^{d \times m}, \mathbf{X}_i [x_1^{(i)}, ..., x_{mi}^{(i)}] \in \mathbf{R}^{d \times m_i},$ $\mathbf{X}_{-i} = \mathbf{X} \setminus \mathbf{X}_i = [\mathbf{X}_1, ..., \mathbf{X}_{i-1}, \mathbf{X}_{i+1}, ..., \mathbf{X}_K] \in \mathbf{R}^{d \times (m-m_i)}$

分别表示总体样本矩阵、第i类样本矩阵和去掉第i类的剩余样本矩阵,显然 X 可表示为 $X = [X_1, \dots, X_K]$ 。 以 X_i 为正类, X_{-i} 为负类,利用算法 2 学习 K 个分类决策函数的方法称为线性 OVR-MSVM。第i个

分类决策函数 $f_i(\mathbf{x}) = (\mathbf{w}_i^*)^{\mathsf{T}} \mathbf{x} + b_i^*$ 对应的原始模型和 Wolfe 对偶形式分别为

$$\min_{\boldsymbol{w}_{i}, b_{i}, \boldsymbol{\xi}_{k}} \frac{1}{2} \| \boldsymbol{w}_{i} \|^{2} + \boldsymbol{C}_{i} \sum_{k=1}^{m} \boldsymbol{\xi}_{k}^{i}$$
s.t. $y_{k}^{i} (\langle \boldsymbol{w}_{i}, \boldsymbol{x}_{k}^{i} \rangle + b_{i}) \geq 1 - \boldsymbol{\xi}_{k}^{i}, \boldsymbol{\xi}_{k}^{i} \geq 0, k = 1, \cdots, m$

和

$$\min_{\boldsymbol{\alpha}^{i}} \frac{1}{2} \boldsymbol{\alpha}^{i \mathrm{T}} \boldsymbol{G}_{i} \boldsymbol{\alpha}^{i} - \boldsymbol{e}_{m}^{\mathrm{T}} \boldsymbol{\alpha}^{i}$$
s.t. $y^{i \mathrm{T}} \boldsymbol{\alpha}^{i} = 0, \mathbf{0} \leqslant \boldsymbol{\alpha}^{i} \leqslant \boldsymbol{C}_{i} \boldsymbol{e}_{m},$
(10)

其中 $w_i \in \mathbf{R}^d$ 和 $b_i \in \mathbf{R}$ 分别是决策函数 $f_i(x)$ 的法向量和阈值, $C_i > 0$ 为模型参数, $\{\xi_k^i\}_{k=1}^m$ 是松弛变量, $G_i = D_i X^T X D_i \in \mathbf{R}^{m \times m}$, $D_i = \operatorname{diag}(y_1^i, \dots, y_m^i) \in \mathbf{R}^{m \times m}$ 。下面给出具体算法。

算法 3 (线性 OVR-MSVM)

- 步1 给定 $K(K \ge 3)$ 类数据集 $T = \{(x_i, y_i)\}_{i=1}^m \in \mathbb{R}^d \times \{1, \dots, K\},$ 选取适当的模型参数 $C_1, \dots, C_K \ge 0$ 。
- 步2 任取 $i \in \{1, \dots, K\}$, 以 X_i 为正类, X_{-i} 为负类, 求解模型(10), 得最优解 $\alpha^i \in \mathbf{R}^m_+$ 。
- 步 3 计算 $\boldsymbol{w}^{i} = \boldsymbol{X} \boldsymbol{D}_{i} \boldsymbol{\alpha}^{i} = \sum_{k=1}^{m} \boldsymbol{\alpha}_{k}^{i} y_{k}^{i} \boldsymbol{x}_{k} \in \mathbf{R}^{d}$ 。
- 步 4 寻找 $\boldsymbol{\alpha}^i$ 的一个正分量 $0 < \alpha_j^i < \mathbf{C}_i$ 计算 $b_i = y_j^i < \mathbf{w}_i, \mathbf{x}_j >$ 。
- 步 5 构造 K 个分类决策函数 $f_i(\mathbf{x}) = (\mathbf{w}_i^*)^{\mathrm{T}} \mathbf{x} + b_i^*, i = 1, \dots, K$ 。
- 步6 对任一输入 $\mathbf{x} \in \mathbf{R}^{d}$,其类标签可判断为 $y_{\bar{x}} = \arg \max(f_{i}(\mathbf{x}) / \| \mathbf{w}_{i}^{*} \|)$ 。

3 PDEs 对 2D-CCA 的影响

本节首先简要回顾如何利用 PDEs 进行图像特征提取(详细内容见文献[10]),然后讨论 PDEs 的进化 对 2D-CCA 中 CCR 的影响。

3.1 基于 PDEs 的图像特征提取方法

给定 K 类噪声(光暗、有遮挡)图像集{ (I_m, h_m) } $_{m=1}^M \in \mathbb{R}^{d_1 \times d_2} \times \mathbb{R}^K$,其中 I_m 是原始图像, h_m 是其对应的标签向量,若 I_m 属于第 i 类,则 h_m 的第 i 个分量 $h_{mi} = 1$,反之 $h_{mi} = 0$ 。令 $H = [h_1, \dots, h_M] \in \mathbb{R}^{K \times M}$ (称为标签矩阵)。基于 PDEs 的图像特征提取模型为

$$\min_{\mathbf{W}, \langle a_i \langle t \rangle \rangle} \mathbf{E} = \mathbf{M}^{-1} \| \mathbf{H} - \mathbf{W} \cdot \mathbf{U} \|_{t=T} \|_{F}^{2} + \lambda \| \mathbf{W} \|_{F}^{2}$$
s.t. $u_{m}^{n+1} = u_{m}^{n} + \Delta t \sum_{i=0}^{5} a_{i}^{n} g(\operatorname{inv}_{i}(u_{m}^{n})) \in \mathbf{R}^{d_{1} \times d_{2}},$

$$u_{m}^{0} = \mathbf{I}_{m}, n = 0, 1, \cdots, N-1, M = 1, \cdots, M,$$
(11)

其中 $A = [a_i^n]_{N \times 6}$ 是控制系数矩阵, $W \in \mathbb{R}^{K \times d_1 d_2}$ 是权矩阵, $u|_{t=T}$ 为t = T时的特征矩阵,vec(u)是矩阵u的向量化, $\lambda > 0$ 是调节参数, $U|_{t=T} = [vec(u_1|_{t=T}), \cdots, vec(u_M|_{t=T})] \in \mathbb{R}^{d_1 d_2 \times M}$,g(x) = x/(1+|x|)是压缩函数,N为进化次数,N次进化后的图像特征矩阵为 u_1^N , \cdots , u_M^N 。图像识别的准确性严重依赖于图像特征提取的效果,而这些特征矩阵又依赖于参数矩阵A。利用梯度下降法,可得参数矩阵A的进化迭代公式

 $(a_i^n)^{k+1} = (a_i^n)^k - \eta (\partial E / \partial a_i^n)^k, i = 0, \dots, 5, n = 0, \dots, N-1,$

其中 $\eta > 0$ 为迭代步长, $\partial E / \partial a_i^n = \Delta t \cdot Tr[(\partial E / \partial U^{n+1})^T B_i^n]$ 且

$$B_i^n = \left[\operatorname{vec}(g(\operatorname{inv}(u_1^N))), \cdots, \operatorname{vec}(g(\operatorname{inv}(u_M^N))) \right] \in \mathbf{R}^{d_1 d_2 \times M},$$

$$C_i^n = \left[\operatorname{vec}(z(i, 1, n)), \cdots, \operatorname{vec}(Z(i, M, n)) \right] \in \mathbf{R}^{d_1 d_2 \times M},$$

$$\partial E / \partial U^{N} = 2M^{-1}W^{T}(WU^{N} - H),$$

$$\partial E / \partial U^{n} = \partial E / \partial U^{N+1} + \Delta t \sum_{i=0}^{5} a_{i}^{n} C_{i}^{n},$$

$$Z(i,m,n) = [Z(i,m,n)(p,q)] \in \mathbb{R}^{d_{1} \times d_{2}}, n = 0, \dots, N-1, i = 0, \dots, 5, m = 0, \dots, M,$$

$$Z(i,m,n)(p,q) = \frac{\partial E}{\partial u_{m}^{n+1}}(p+1,q) \cdot \frac{\partial g(\operatorname{inv}_{i}(u_{m}^{n})(p+1,q))}{\partial u_{m}^{n}(p+1,q)} + \frac{\partial E}{\partial u_{m}^{n+1}}(p-1,q)$$

$$\cdot \frac{\partial g(\operatorname{inv}_{i}(u_{m}^{n})(p-1,q))}{\partial u_{m}^{n}(p-1,q)} + \frac{\partial E}{\partial u_{m}^{n+1}}(p,q+1) \cdot \frac{\partial g(\operatorname{inv}_{i}(u_{m}^{n})(p,q+1))}{\partial u_{m}^{n}(p,q+1)} + \frac{\partial E}{\partial u_{m}^{n+1}}(p,q-1)$$

$$\cdot \frac{\partial g(\operatorname{inv}_{i}(u_{m}^{n})(p,q-1))}{\partial u_{m}^{n}(p,q-1)} + \frac{\partial E}{\partial u_{m}^{n+1}}(p,q) \cdot \frac{\partial g(\operatorname{inv}_{i}(u_{m}^{n})(p,q))}{\partial u_{m}^{n}(p,q)} \circ$$

3.2 PDEs 对 2D-CCA 的影响

目前大多数的降噪技术和降维技术大都是独立进行学习的,很少进行一体化学习。雷等人提出的基于 PDEs 的 CCA 方法虽然可以对图像进行降噪降维处 2D-CCA 噪声图 识别 PDEs 任选累计 识别器 理,但需将图像拉长为向量,这种拉长不仅会破坏图像 像集 精度 贡献率 的几何结构,而且可能导致"维度灾难",增加算法的计

算复杂度。本节以 PDEs 为降噪工具,以单向 2D-

- 调整进化次数-图 1 2D-CCA 和 PDEs 的一体化学习路径

CCA为降维工具,以SVM或OVR-MSVM为识别器,以识别精度为标准,对2D-CCA和PDEs进行一体化 学习,并研究 PDEs 的进化对单向 2D-CCA 中 CCR 的影响。具体思路见图 1 所示。

下面给出具体算法。

算法4 (2D-CCA 和 PDEs 的一体化学习)

步1 给定 K 类噪声(光暗、有遮挡)图像集 $\{(I_m, h_m)\}_{m=1}^M \in \mathbf{R}^{d_1 \times d_2} \times \mathbf{R}^K$,选择适当的识别器和模型参 数。置 PDEs 进化次数 N=1。

步2 利用 PDEs 对图像集进行降噪,得特征矩阵集 $\{u_i \in \mathbb{R}^{d_1 \times d_2}\}_{i=1}^M$ 。

步3 将每个 u_i 按列分块,得到两个矩阵集 $\{X_i \in \mathbb{R}^{d_1 \times d_3}\}_{i=1}^M \cap \{Y_i \in \mathbb{R}^{d_1 \times (d_2 - d_3)}\}_{i=1}^M$,其中 $d_3 < d_2$ 。

步4 任取 CCR μ (一般 0.8 $\leqslant \mu \leqslant 1$),利用算法 1 对矩阵集 $\{X_i \in \mathbb{R}^{d_1 \times d_3}\}_{j=1}^M$ 和 $\{Y_i \in \mathbb{R}^{d_1 \times (d_2 - d_3)}\}_{j=1}^M$ 进行 联合降维,得降维矩阵集 $\{X_i^* \in \mathbf{R}^{d_1 \times d_4}\}_{i=1}^M$ 和 $\{Y_i^* \in \mathbf{R}^{d_1 \times d_4}\}_{i=1}^M$,其中 1《 d_4 《min{ $d_3, d_2 - d_3$ }.

将降维矩阵集进行融合,得 $\left\{ \begin{vmatrix} \mathbf{X}_{j}^{*} \\ \mathbf{Y}_{i}^{*} \end{vmatrix} \in \mathbf{R}^{2d_{1} \times d_{4}} \right\}_{j=1}^{M}$ 。 步 5

步6 利用识别器进行识别,得识别精度。若识别精度不理想,置 N←N+1,转步 2; 否则,输出结果。

4 实验与结果分析

本节通过实验验证了算法4的有效性。采用六折交叉验证法,即将全部样本随机分为六份,取五份作为 训练集,剩余一份作为测试集,循环六次,取平均精度。CCR分别取为不小于 0.8,0.85,0.9,0.95 和 1 五种情 况(具体计算结果见表 1-6 中括号部分)。PDEs 的进化次数 $N \leq 8$ 且不考虑压缩函数的影响,即取 g(x) =x。所有实验都在 AR 人脸数据集^[17]和 FRGCv 数据集^[18]上完成。

4.1 AR 人脸数据集上的实验与结果分析

4.1.1 数据集的构成。AR 人脸数据集包括 100 个人(男 50 人, 女 50 人)的 2600 张面部图像, 每人 26 张, 每张图像的尺寸为50×40。每人的图像包括正面视图、具有不同的面部表情的图像和不同照明和遮挡(太 阳眼镜和围巾)条件下的图像。随机选取8人(见图2)构成4个二类图像集,随机选取9人(见图3)构成3个 三类图像集。

图 2 基于 AR 人脸数据集的 4 个二类图像集

第3组

第4组

第1组

第2组 图 3 基于 AR 人脸数据集的 3 个三类图像集

4.1.2 实验与结果分析。下面的表 1 和表 2 分别是二类图像集和三类图像集的实验结果,其中 N=0 表示 没有经过 PDEs 的进化,只是利用单向 2D-CCA 进行了降维。

表 1 二类图像集的实验结果(线性 SVM 作为识别器,C=0.5)

	Ν	0	1	2	3	4	5	6	7	8
	<u>\</u> 0.8	0.5000	0 5000	0.8611	0.8333	0.8611	0.8333	0.8611	0.8056	0.8611
	≥0.8	(0.8334)	(0.8349)	(0.8359)	(0.8375)	(0.8401)	(0.8458)	(0.8649)	(0.8745)	0.8512)
	> 0.05	0.5833	1.0000	0.8333	0.8333	0.8333	0.8056	0.8611	0.8611	0.8611
	≥0.85	(0.9181)	(0.9188)	(0.9193)	(0.9201)	(0.9214)	(0.9242)	(0.8649)	(0.8745)	(0.8512)
第1组	≥0.9	0.5833	1.0000	0.8333	0.8333	0.8333	0.8333	0.8611	0.8611	0.8611
		(0.9181)	(0.9188)	(0.9193)	(0.9201)	(0.9214)	(0.9242)	(0.9334)	(0.9259)	(0.9120)
	> 0.05	0.5843	1.0000	0.8889	0.8333	0.8333	0.7778	0.8333	0.8611	0.8333
	≥0.95	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(96.53%)	(95.20%)
	1	0.5843	1.0000	0.8889	0.8333	0.8333	0.7778	0.8333	0.8611	0.8333
		0.5833	1.0000	0.8333	1.0000	0.9000	0.8194	0.9167	0.9479	0.8519
	≥0.8	(0.8370)	(0.8406)	(0.8421)	(0.8447)	(0.8499)	(0.8635)	(0.8157)	(0.8649)	(0.8287)
	> 0.05	0.5000	1.0000	0.8333	0.8333	0.9000	0.8194	0.9048	0.9000	0.9259
	≥0.85	(0.9204)	(0.9224)	(0.9231)	(0.9242)	(0.9266)	(0.8635)	(0.8943)	(0.8649)	(0.8898)
第2组	≥0.9	0.5000	1.0000	0.8333	0.8333	0.9000	0.8194	0.9048	0.9479	0.8519
		(0.9204)	(0.9224)	(0.9231)	(0.9242)	(0.9266)	(0.9333)	(0.9503)	(0.9267)	(0.9396)
	>0.05	0.5000	0.9583	0.6944	1.0000	0.9583	0.8889	0.9048	1.0000	1.0000
	≥0.95	(1.0000)	(0.9678)	(0.9507)	(1.0000)	(1.0000)	(1.0000)	(0.9503)	(0.9699)	(0.9803)
	1	0.5000	1.0000	0.8333	1.0000	0.9583	0.8889	0.7778	0.8750	0.9167
	≥0.8	0.6667	1.0000	0.7500	1.0000	0.9000	0.8194	0.8929	0.8438	0.8981
		(0.8275)	(0.8301)	(0.8325)	(0.8375)	(0.8517)	(0.8091)	(0.8662)	(0.8425)	(0.8609)
	>0.95	0.5833	1.0000	0.8333	1.0000	0.9000	1.0000	0.8929	0.9479	0.8981
	≥0.05	(0.9179)	(0.9195)	(0.9206)	(0.9228)	(0.8517)	(0.8908)	(0.8662)	(0.8915)	(0.8609)
第3组		0.5833	1.0000	0.8333	1.0000	0.9000	0.8750	0.9167	0.9063	0.9352
	≥0.9	(0.9179)	(0.9195)	(0.9206)	(0.9228)	(0.9287)	(0.9503)	(0.9299)	(0.9017)	(0.9169)
	>0.05	0.5833	0.9167	0.8889	1.0000	0.9333	0.8750	0.8810	0.8646	0.8611
	≥0.95	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9503)	(0.9715)	(0.9515)	(0.9592)
	1	0.5833	0.9167	0.8889	1.0000	0.9333	0.7222	0.8810	0.9375	0.8241
	≥0.8	0.5000	1.0000	0.8333	0.9792	0.8972	0.9421	0.9246	0.8247	0.9136
	> 0.0	(0.8493)	(0.8504)	(0.8519)	(0.8545)	(0.8269)	(0.8752)	(0.8292)	(0.8535)	(0.8720)
	≥0.85	0.5833	1.0000	0.8333	0.9792	0.9028	0.9421	0.9107	0.8924	0.9136
644 · · · · ·		(0.9285)	(0.8504) 1 0000	(0.8519) 0.8611	(0.8545)	(0.8596)	(0.8752)	(0.8629) 0.9127	(0.9109) 0.8924	(0.8720)
第4组	≥0.9	0.5833	1.0000	(0.00011	(0.0014)	0.3000	0.3330	0.3127	0.0324	0.3120
		(0.9285)	(0.9296) 0.9792	(0.9303) 0.8241	(0.9316) 1.0000	(0.9342) 0.8972	(0.9419) 0.9375	(0.9257) 0.8948	(0.9109) 0.8750	(0.9305) 0.8781
	≥0.95	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9704)	(0.9840)	(0.9679)	(0.9503)	(0.9676)
	1	0.7500	0.9792	0.8241	1.0000	0.9056	0.9005	0.8433	0.8550	0.8395

表 2 三类图像集的实验结果(线性 OVR-MSVM 作为识别器,C=0.5)

		- 2,4		, ()) ј на ј «					
	Ν	0	1	2	3	4	5	6	7
	<u> </u>	0.7222	1.0000	0.8333	0.9931	0.8889	0.8704	0.9127	0.8247
	<i>≥</i> 0.8	(0.8269)	(0.8301)	(0.8358)	(0.8585)	(0.8464)	(0.8297)	(0.8367)	(0.8314)
	\ 0.0F	0.7222	1.0000	0.8380	0.9931	0.8833	0.9444	0.9067	0.9253
	≥0.85	(0.9187)	(0.9206)	(0.9240)	(0.8585)	(0.8710)	(0.8958)	(0.8529)	(0.8933)
第1组		0.7222	1.0000	0.8380	0.9965	0.9083	0.9769	0.9147	0.9618
	≥0.9	(0.9187)	(0.9206)	(0.9240)	(0.9371)	(0.9116)	(0.9436)	(0.9123)	(0.9373)
	N	0.6667	0.9514	0.8426	1.0000	0.9028	0.9352	0.9246	0.9306
	≥0.95	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9642)	(0.9775)	(0.9542)	(0.9775)
	1	0.6667	0.9514	0.8426	1.0000	0.8972	0.8218	0.9246	0.6910
	<u> </u>	0.7222	1.0000	0.6065	0.9931	0.8333	0.9537	0.8611	0.8976
	≥0.8	(0.8297)	(0.8525)	(0.8346)	(0.8309)	(0.8178)	(0.8243)	(0.8148)	(0.8309)
	≥0.85	0.7778	1.0000	0.8750	1.0000	0.8889	0.9514	0.8750	0.9201
		(0.9192)	(0.8525)	(0.9219)	(0.9247)	(0.8542)	(0.9017)	(0.8792)	(0.8536)
第2组	≥0.9	0.7778	0.9167	0.8750	1.0000	0.8917	0.9514	0.8909	0.9340
		(0.9192)	(0.9210)	(0.9219)	(0.9247)	(0.9301)	(0.9017)	(0.9350)	(0.9082)
	≥0.95	0.7222	0.8542	0.8426	1.0000	0.8972	0.9931	0.8948	0.8611
		(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9565)	(0.9745)	(0.9514)
	1	0.7222	0.8542	0.8426	1.0000	0.8972	0.9583	0.8909	0.8021
		0.6667	1.0000	0.5926	1.0000	0.8806	0.9560	0.8690	0.8993
	≥0.8	(0.8396)	(0.8416)	(0.8453)	(0.8543)	(0.8060)	(0.8598)	(0.8426)	(0.8004)
	~	0.7222	1.0000	0.7315	1.0000	0.8750	0.9560	0.8988	0.9271
	≥0.85	(0.9205)	(0.9210)	(0.9234)	(0.8543)	(0.8817)	(0.8598)	(0.8979)	(0.8706)
第3组	~ ~ ~	0.7222	1.0000	0.7315	0.9815	0.8944	0.9410	0.9028	0.9757
	≥0.9	(0.9205)	(0.9210)	(0.9234)	(0.9301)	(0.9493)	(0.9220)	(0.9475)	(0.9184)
		0.6667	1.0000	0.7731	0.9514	0.8889	0.8657	0.9028	0.8628
	≥0.95	(1.0000)	(1.0000)	(1.0000)	(0.9765)	(1.0000)	(0.9716)	(0.9825)	(0.9598)
	1	0.6667	1.0000	0.7731	0.9931	0.8889	0.5671	0.9107	0.6684

从表 1 和表 2 中可以看出,无论 CCR 的取值如何,最多经过 3 次 PDEs 进化,识别精度就能达到最优, 甚至达到 1,最低也能提高 20%以上。

4.2 FRGCv 数据集上的实验与结果分析

4.2.1 数据集的构成。FRGCv数据集包括 466 个人的 4007 张面部图像,每张图像的尺寸为 64×64。随机 抽取 8 人的面部图像构成 4 组二类图像集(见图 4),随机抽取 9 人的面部图像构成 3 组三类图像集(见图 5)。为了便于比较,识别器的模型参数均取为 10²。

	N	0	1	2	3	4	5	6	7
		0.5556	0.6597	0.7500	0.7917	0.7972	0.7847	0.7857	0.7795
第1组	≥0.8	(0.8821)	(0.8822)	(0.8824)	(0.8826)	(0.8830)	(0.8836)	(0.8849)	(0.8865)
		0.5556	0.6597	0.7500	0.7361	0.8036	0.7847	0.7972	0.7795
	≥0.85	(0.8821)	(0.8822)	(0.8824)	(0.8825)	(0.8830)	(0.8836)	(0.8830)	(0.8865)
		0.5833	0.7014	0.7407	0.6910	0.8167	0.8009	0.8016	0.7847
	≥0.9	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	×	0.5833	0.7014	0.7407	0.8160	0.7694	0.8009	0.8016	0.7847
	≥0.95	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	1	0.5833	0.5972	0.7407	0.8160	0.8167	0.8009	0.8016	0.7847
		0.5833	0.7569	0.6808	0.7674	0.7583	0.7708	0.7599	0.7326
	≥0.8	(0.8803)	(0.8808)	(0.8815)	(0.8823)	(0.8834)	(0.8847)	(0.8863)	(0.8841)
	N 0 05	0.5833	0.6806	0.5972	0.6840	0.6806	0.7879	0.7540	0.7656
	≥0.85	(0.8803)	(0.8808)	(0.8810)	(0.8814)	(0.8819)	(0.8826)	(0.8833)	(0.8819)
第2组	≥0.9	0.5417	0.6875	0.6157	0.6458	0.6361	0.7830	0.6766	0.7430
		(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	≥0.95	0.5417	0.6875	0.7083	0.7831	0.5667	0.6134 0	.6210 0.743	0
		(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	1	0.5417	0.6875	0.7361	0.7843	0.5667	0.5810	0.5714	0.7430
	≥0.8	0.5347	0.6806	0.7222	0.7917	0.7500	0.8426	0.7857	0.7882
		(0.8843)	(0.8852)	(0.8863)	(0.8874)	(0.8887)	(0.8901)	(0.8916)	(0.8932)
		0.5347	0.6806	0.7222	0.7431	0.7278	0.7824	0.7813	0.7674
	≥0.05	(0.8843)	(0.8852)	(0.8863)	(0.8862)	(0.8870)	(0.8878)	(0.8886)	(0.8896)
第3组	>0.0	0.5833	0.6042	0.6157	0.6910	0.6917	0.7926	0.6825	0.7066
	≥0.9	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	>0.05	0.5833	0.5486	0.6157	0.6354	0.6917	0.7269	0.6468	0.6580
	≥0.95	(1.0000)	(1.0000)	(0.8863)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	1	0.5833	0.5347	0.7407	0.6354	0.7599	0.6227	0.6270	0.6146
	>0.8	0.5278	0.7708	0.7361	0.8646	0.7917	0.8148	0.8241	0.8299
	> 0.0	(0.8871)	(0.8868)	(0.8870)	(0.8876)	(0.8885)	(0.8897)	(0.8911)	(0.8926)
	>0.85	0.5278	0.6875	0.7083	0.7951	0.7806	0.8495	0.8075	0.8194
	≥0.00	(0.8871)	(0.8870)	(0.8870)	(0.8872)	(0.8876)	(0.8882)	(0.8889)	(0.8898)
第4组	>0.9	0.5417	0.6181	0.6343	0.8264	0.7361	0.7824	0.8016	0.7726
		(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	≥0.95	0.5417	0.5625	0.6056	0.8125	0.6528	0.7130	0.7271	0.8090
	<i>≫</i> 0.90	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
	1	0.5417	0.5625	0.5741	0.8264	0.7722	0.6273	0.6429	0.7917

表 3 二类图像集的实验结果(线性 SVM 作为识别器, $C=10^2$)

从表 3 和表 4 中可以看出,无论 CCR 的取值如何,最多经过 5 次 PDEs 进化,识别精度就能达到最优。 对二类图像集来说,精度最低提高了 24.6%,最高提高了 63.81%。对三类图像集来说,精度最低提高了 56. 4%,最高提高了 64.58%。

从上述一系列实验可以看出,PDEs的进化不仅可以提高图像的识别精度,而且可以弱化 CCR 的选择对识别精度的影响,甚至不用考虑 CCR 的选择问题,通过不超过 5 次的 PDEs 进化即可达到最优 识别精度。

表 4 三类图像集的实验结果(线性 OVR-MSVM 作为识别器, $C=10^2$)

第1组 ≥0.8 0.5278 0.7847 0.7546 0.8264 0.8229 0.8079 0.7976 0.7587 (0.8814) (0.8820) (0.8830) (0.8844) (1.0000) (0.8891) (0.8865) (0.8963) ≥0.85 0.5278 0.7847 0.7546 0.8264 0.8229 0.8079 0.7976 0.7587 (0.8814) (0.8820) (0.8830) (0.8844) (1.0000) (0.8891) (0.8865) (0.8963) ≥0.85 0.5278 0.7407 0.8229 0.7944 0.7801 0.7817 0.7049 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 1 0.5000 0.7639 0.7407 0.8229 0.7944 0.7801 0.7817 0.7049 (1.0000) (1.0000) (1.0000) 1.0000 (1.0000) (1.0000) (1.0000) (1.0000) 1 0.5000 0.7639 0.7407 0.8229 0.7944 0.7801 0.7817 0.7049 (1.0000) (1.0000) (1.0000) 1.0000 (1.0000) (1.0000) (1.0000) (1.0000) 1 0.5000 0.7639 0.7407 0.8229 0.7944 0.7801 0.7817 0.7049 ≥0.95 0.5185 0.7917 0.7731 0.8021 0.8111 0.7801 0.7798 0.7708 (0.8800) (0.8809) (0.8820) (0.8840) (0.8863) (0.8843) (0.8983) (0.9023) ≥0.85 0.5185 0.7917 0.7731 0.8021 0.8111 0.7801 0.7798 0.7708 (0.8800) (0.8809) (0.8820) (0.8840) (0.8863) (0.8843) (0.8983) (0.9023) ≥0.85 0.5185 0.7917 0.7130 0.751 0.8139 0.7454 0.7183 0.7708 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 1 0.5185 0.7917 0.7130 0.7569 0.8139 0.7166 0.7361 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 1 0.5185 0.7917 0.7130 0.7639 0.8139 0.7176 0.7460 0.7361 (0.8805) (0.8806) (0.8810) (0.8805) (0.8820) (0.88139 (0.8816) (0.8824) (0.8809) ≥0.85 (0.8805) (0.8806) (0.8810) (0.8806) (0.8820) (0.8816) (0.8824) (0.8819) ≥0.85 (0.8805) (0.8806) (0.8810) (0.8808) (0.8820) (0.8816) (0.8812) (0.8816) (0.8812) (0.8816) (0.8824) (0.8812) 20.85 (0.8805) (0.8806) (0.8810) (0.8808) (0.8820) (0.8816) (0.8824) (0.8812) 20.85 (0.8805) (0.8806) (0.8810) (0.8808) (0.8820) (0.8816) (0.8824) (0.8812) 20.85 (0.8805) (0.8806) (0.8810) (0.8808) (0.8820) (0.8816) (0.8824) (0.8812) 20.95 (0.5139 0.6875 0.6528 0.7257 0.8214 0.7917 0.8171 0.7976 0.8171 20.95 (0.5139 0.6875 0.6528 0.7917 0.8171 0.7917 0.8171 20.95 (0.51		Ν	0	1	2	3	4	5	6	7
 第1组 <td rowspan="3"></td> <td></td> <td>0.5278</td> <td>0.7847</td> <td>0.7546</td> <td>0.8264</td> <td>0.8229</td> <td>0.8079</td> <td>0.7976</td> <td>0.7587</td>			0.5278	0.7847	0.7546	0.8264	0.8229	0.8079	0.7976	0.7587
Pert and probability andeces probability and probability and probabi		≥0.8	(0.8814)	(0.8820)	(0.8830)	(0.8844)	(1.0000)	(0.8891)	(0.8865)	(0.8963)
 第1組 (0.8814) (0.8820) (0.8830) (0.8844) (1.0000) (0.0000) (0.0000) (1.0000) (1.0000)<td>×</td><td>0.5278</td><td>0.7847</td><td>0.7546</td><td>0.8264</td><td>0.8229</td><td>0.8079</td><td>0.7976</td><td>0.7587</td>		×	0.5278	0.7847	0.7546	0.8264	0.8229	0.8079	0.7976	0.7587
第1組 ●0.90.50000.76390.74070.82290.79440.78010.78170.7049(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)>0.05000.76390.74070.82290.79440.78010.78170.704910.50000.76390.74070.82290.79440.78010.78170.704910.50000.76390.74070.82290.79440.78010.78170.704910.50000.76390.74070.82290.79440.78010.78170.704910.50000.76390.71070.82290.79440.78010.78170.704920.51850.79170.71310.80210.88110.78110.79810.902320.9030.51850.79170.71300.79510.81390.74540.89330.902320.9040.00001.00001.00001.00001.00001.00001.00000.902320.9030.51850.79170.71300.7500.81390.75600.74600.736120.9030.51850.79170.71300.76390.81390.71600.70601.000010.91580.79170.71300.76390.81390.71700.81410.78630.867520.9150.51850.79170.71300.76390.81390.71600.6863 </td <td></td> <td><i>2</i>0.85</td> <td>(0.8814)</td> <td>(0.8820)</td> <td>(0.8830)</td> <td>(0.8844)</td> <td>(1.0000)</td> <td>(0.8891)</td> <td>(0.8865)</td> <td>(0.8963)</td>		<i>2</i> 0.85	(0.8814)	(0.8820)	(0.8830)	(0.8844)	(1.0000)	(0.8891)	(0.8865)	(0.8963)
第0.9 (1.0000) <	第1组		0.5000	0.7639	0.7407	0.8229	0.7944	0.7801	0.7817	0.7049
		≥0.9	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
(1.0000) (1.0000)		>0.05	0.5000	0.7639	0.7407	0.8229	0.7944	0.7801	0.7817	0.7049
10.50000.76390.74070.82290.79440.78010.78170.7049		≥0.95	(1.0000)	(1.0000)	(1.0000)	1.0000	(1.0000)	(1.0000)	(1.0000)	(1.0000)
Perconstant		1	0.5000	0.7639	0.7407	0.8229	0.7944	0.7801	0.7817	0.7049
		>0.9	0.5185	0.7917	0.7731	0.8021	0.8111	0.7801	0.7798	0.7708
$ \begin{split} & & & & & & & & & & & & & & & & & & $		≫0.0	(0.8800)	(0.8809)	(0.8820)	(0.8840)	(0.8863)	(0.8894)	(0.8983)	(0.9023)
		≥0.85	0.5185	0.7917	0.7731	0.8021	0.8111	0.7801	0.7798	0.7708
			(0.8800)	(0.8809)	(0.8820)	(0.8840)	(0.8863)	(0.8894)	(0.8983)	(0.9023)
	第2组	≥0.9	0.5185	0.7917	0.7130	0.7951	0.8139	0.7454	0.7183	0.7708
 $$			(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9023)
1 0.000 (1.0000) $(1.0$		≥0.95	0.5185	0.7917	0.7130	0.7569	0.8139	0.7500	0.7460	0.7361
1 0.5185 0.7917 0.7130 0.7639 0.8139 0.7176 0.7460 0.7361 $\geqslant 0.8$ 0.5278 0.5833 0.7407 0.6111 0.8657 0.7972 0.8194 0.6875 $\geqslant 0.8$ (0.8805) (0.8806) (0.8810) (0.8806) (0.8806) (0.8806) (0.8806) (0.8820) (0.8816) (0.8824) (0.8809) $\geqslant 0.85$ 0.5278 0.6250 0.7407 0.6632 0.8657 0.7972 0.8194 0.7517 $\geqslant 0.85$ (0.8805) (0.8806) (0.8810) (0.8808) (0.8820) (0.8816) (0.8824) (0.8812) $\Re 3$ 组 $\geqslant 0.9$ 0.5139 0.6875 0.6528 0.7257 0.8214 0.7917 0.8171 0.7986 $\geqslant 0.95$ 0.5139 0.6875 0.6528 0.7917 0.8171 0.7976 0.8171 $\geqslant 0.95$ 0.5139 0.6875 0.6528 0.7917 0.8171 0.7976 0.8171 $\geqslant 0.95$ 0.5139 0.6875 0.6528 0.7917 0.8171 0.7976 0.8171 >0.9513 0.6875 0.6528 0.7917 0.8171 0.7917 0.7976 0.8171 >0.9513 0.6875 0.6528 0.7917 0.8171 0.7916 0.8171 >0.9513 0.6875 0.6528 0.7917 0.8171 0.7916 0.8171 >0.9513 0.6875 0.6528 0.7917 0.8171 0.9000 1.0000			(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
$\gg_{0.88}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.5185	0.7917	0.7130	0.7639	0.8139	0.7176	0.7460	0.7361
		>0.9	0.5278	0.5833	0.7407	0.6111	0.8657	0.7972	0.8194	0.6875
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		≫0.0	(0.8805)	(0.8806)	(0.8810)	(0.8806)	(0.8820)	(0.8816)	(0.8824)	(0.8809)
$ \stackrel{\geq 0.85}{\oplus} $ (0.8805) (0.8806) (0.8810) (0.8808) (0.8820) (0.8816) (0.8824) (0.8812) 第 3 组 $ \stackrel{\geq 0.9}{\to} $ (0.5139 0.6875 0.6528 0.7257 0.8214 0.7917 0.8171 0.7986 (1.0000) (1.00		> 0.05	0.5278	0.6250	0.7407	0.6632	0.8657	0.7972	0.8194	0.7517
第3组 ≥ 0.9 0.51390.68750.65280.7257 0.8214 0.79170.81710.7986 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) ≥ 0.95 0.5139 0.6875 0.6528 0.7917 0.8171 0.7917 0.7976 0.8171 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)		<i>2</i> 0.85	(0.8805)	(0.8806)	(0.8810)	(0.8808)	(0.8820)	(0.8816)	(0.8824)	(0.8812)
≥ 0.9 (1.0000) (1.	第3组		0.5139	0.6875	0.6528	0.7257	0.8214	0.7917	0.8171	0.7986
≥0.95 0.5139 0.6875 0.6528 0.7917 0.8171 0.7917 0.7976 0.8171 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)		≥0.9	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)
≥ 0.95 (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 1.0000)			0.5139	0.6875	0.6528	0.7917	0.8171	0.7917	0.7976	0.8171
		≥0.95	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	1.0000)
1 0.5139 0.6875 0.6528 0.7917 0.8247 0.7917 0.7143 0.8171		1	0.5139	0.6875	0.6528	0.7917	0.8247	0.7917	0.7143	0.8171

4.3 对比实验与分析

为进一步证实该算法的优越性,本节将本文提出的算法与 CCA 算法、2D-CCA 算法和雷等人提出的基 于 PDEs 的 CCA 算法进行对比实验.结合前两节与文献[10]中的结论,本实验仅进行 5 次的 PEDs 进化。 4.3.1 数据集的构成。本实验仍在 AR 数据集上进行,随机选取 8 人(见图 6)构成 4 个二类图像集,随机选 取 9 人(见图 7)构成 3 个三类图像集。

图 7 基于 AR 人脸数据集的 3 个三类图像集

4.3.2 实验与结果分析。下面的表 5 和表 6 分别是二类图像集和三类图像集的实验结果,其中 N=0 表示 没有经过 PDEs 的进化,只是利用一维 CCA 或单向 2D-CCA 进行了降维。

表 5 .	二类图像集的实验结果(线性 SVM 作为识别器,	C = 0.5)
-------	--------------------------	----------

		基于 PDEs 的 CCA							基于 PDEs 的单向 2D-CCA						
	Ν	0	1	2	3	4	5	0	1	2	3	4	5		
	<u>\</u> 0.0	0.5250	0.5625	0.5750	0.6500	0.6700	0.7179	0.5500	1.0000	0.8333	1.0000	0.9000	0.9583		
	≫0.0	(0.8004)	(0.8004)	(0.8004)	(0.8004)	(0.8004)	(0.8004)	(0.8370)	(0.8406)	(0.8421)	(0.8447)	(0.8499)	(0.8635)		
	>0.9F	0.5500	0.5750	0.5833	0.6000	0.6833	0.6964	0.5600	1.0000	0.8333	1.0000	0.9000	0.9583		
	<i>≫</i> 0.85	(0.8609)	(0.8609)	(0.8609)	(0.8609)	(0.8609)	(0.8609)	(0.9204)	(0.9224)	(0.9231)	(0.9242)	(0.9266)	(0.8635)		
第1组	>0.0	0.5500	0.5625	0.5917	0.6250	0.6875	0.7000	0.5600	1.0000	0.8333	1.0000	0.9000	0.9306		
	≥0.9	(0.9305)	(0.9305)	(0.9306)	(0.9305)	(0.9103)	(0.9305)	(0.9204)	(0.9224)	(0.9231)	(0.9242)	(0.9266)	(0.9333)		
	>0.05	0.5750	0.5917	0.6125	0.6200	0.6750	0.6964	0.6333	1.0000	0.8333	1.0000	0.8833	0.9167		
	≥0.95	(0.9513)	(0.9513)	(0.9513)	(0.9513)	(0.9513)	(0.9513)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)		
	1	0.6625	0.6917	0.6625	0.7050	0.7134	0.7042	0.6333	1.0000	0.8333	1.0000	0.8833	0.9167		
		0.5000	0.5063	0.5300	0.5708	0.6500	0.6875	0.5000	1.0000	0.8333	1.0000	0.9000	0.9444		
	<i>≫</i> 0.8	(0.8168)	(0.8168)	(0.8168)	(0.8168)	(0.8168)	(0.8168)	(0.8378)	(0.8395)	(0.8413)	(0.8447)	(0.8534)	(0.8073)		
	> 0.05	0.5000	0.5063	0.5400	0.5833	0.6679	0.6781	0.5000	1.0000	0.8334	1.0000	0.9000	1.0000		
	≥0.85	(0.8759)	(0.8759)	(0.8759)	(0.8759)	(0.8759)	(0.8759)	(0.9284)	(0.9294)	(0.9304)	(0.9322)	(0.8534)	(0.8826)		
第2组		0.5000	0.5125	0.5500	0.6083	0.6607	0.7031	0.5000	1.0000	0.8334	1.0000	0.9000	0.9306		
	≥0.9	(0.9162)	(0.9162)	(0.9162)	(0.9162)	(0.9162)	(0.9162)	(0.9284)	(0.9294)	(0.9304)	(0.9322)	(0.9363)	(0.9503)		
	≥0.95	0.5333	0.5563	0.6000	0.6500	0.6786	0.7125	0.7000	1.0000	0.8333	1.0000	0.9000	0.9306		
		(0.9550)	(0.9550)	(0.9550)	(0.9550)	(0.9550)	(0.9550)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9503)		
	1	0.7200	0.7625	0.8250	0.8313	0.7750	0.7500	0.7000	1.0000	0.8333	1.0000	0.9021	0.9167		
	≥0.8	0.5750	0.5875	0.6083	0.6188	0.6375	0.6562	0.8333	1.0000	0.8333	1.0000	0.8167	0.9583		
		(0.8385)	(0.8385)	(0.8385	(0.8385)	(0.8385)	(0.8385)	(0.8378)	(0.8395)	(0.8413)	(0.8447)	(0.8534)	(0.8073)		
	>0.95	0.5500	0.5938	0.6050	0.6167	0.6214	0.6344	0.8333	1.0000	0.7778	1.0000	0.8167	1.0000		
	≥0.05	(0.8857)	(0.8857)	(0.8857)	(0.8857)	(0.8857)	(0.8857)	(0.9284)	(0.9294)	(0.9304)	(0.9322)	(0.8534)	(0.8826)		
第3组	>0.0	0.5750	0.5917	0.6000	0.6100	0.6083	0.6179	0.8333	1.0000	0.7778	1.0000	0.8500	0.9583		
	≥0.9	(0.9209)	(0.9209)	(0.9209)	(0.9209)	(0.9209)	(0.9209)	(0.9284)	(0.9294)	(0.9304)	(0.9322)	(0.9363)	(0.9503)		
	>0.05	0.5500	0.5625	0.5667	0.5750	0.5900	0.6042	0.8333	1.0000	0.8333	1.0000	0.8667	0.9583		
	≥0.95	(0.9645)	(0.9645)	(0.9645)	(0.9645)	(0.9645)	(0.9645)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9503)		
	1	0.6750	0.7000	0.6625	0.6350	0.6125	0.6321	0.8333	1.0000	0.8333	1.0000	0.8667	0.9583		
	>0 0	0.6500	0.6625	0.6750	0.6938	0.7150	0.7417	0.5000	1.0000	0.8333	1.0000	0.9000	0.9861		
	≥0.0	(0.8293)	(0.8293)	(0.8293)	(0.8293)	(0.8293	(0.8293)	(0.8363)	(0.8373)	(0.8403)	(0.8466)	(0.8658)	(0.8422)		
		0.6500	0.6750	0.6875	0.6950	0.7125	0.6929	0.5000	1.0000	0.8611	1.0000	0.9000	1.0000		
	<i>≫</i> 0.85	(0.8812)	(0.8812)	(0.8812)	(0.8812)	(0.8812)	(0.8812)	(0.9205)	(0.9220)	(0.9234)	(0.9265)	(0.8658)	(0.9163)		
第4组	>0.0	0.6250	0.6500	0.6667	0.7042	0.7250	0.7594	0.5833	1.0000	0.8611	1.0000	0.9333	1.0000		
	≥0.9	(0.9218)	(0.9218)	(0.9218)	(0.9218)	(0.9218)	(0.9218)	(0.9205)	(0.9220)	(0.9234)	(0.9265)	(0.9364)	(0.9163)		
		0.6500	0.6625	0.6667	0.6875	0.7393	0.7688	0.7500	1.0000	0.8889	1.0000	0.9167	1.0000		
	<i>∞</i> 0.95	(0.9530)	(0.9530)	(0.9530)	(0.9530)	(0.9530)	(0.9530)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9639)		
	1	0.5750	0.6500	0.6167	0.6563	0.7071	0.7125	0.7500	1.0000	0.8889	1.0000	0.9167	1.0000		

从表 5 和表 6 中可以看出,基于 PDEs 的 CCA 算法和单向 2D-CCA 算法均可提高图像的识别精度,而 且可以弱化 CCR 的选择对识别精度的影响,甚至不用考虑 CCR 的选择问题。但相比之下本文提出的算法 可以在 PDEs 进化次数更少的情况下获得更好的识别精度,甚至可达 100%的识别精度。

表 6 三类图像集的实验结果(线性 OVR-MSVM 作为识别器,C=0.5)

	基于 PDEs 的 CCA								基于 PDEs 的单向 2D-CCA				
	Ν	0	1	2	3	4	5	0	1	2	3	4	5
	>0.0	0.7722	0.8370	0.8750	0.8956	0.9000	0.9302	0.6667	1.0000	0.8241	1.0000	0.8917	0.9398
	≥0.0	(0.8003)	(0.8003)	(0.8003)	(0.8003)	(0.8003)	(0.8003)	(0.8303)	(0.8327)	(0.8350)	(0.8402)	(0.8584)	(0.8398)
		0.7722	0.8259	0.8667	0.8933	0.9167	0.9254	0.6667	1.0000	0.8333	1.0000	0.8917	0.9398
	≥0.05	(0.8530)	(0.8530)	(0.8530)	(0.8530)	(0.8530)	(0.8530)	(0.8590)	(0.9196)	(0.9203)	(0.9218)	(0.8584)	(0.9081)
第1组	>0.0	0.8000	0.8481	0.8833	0.9111	0.9259	0.9365	0.7222	1.0000	0.8333	1.0000	0.9000	0.9398
	≥0.9	(0.9220)	(0.9220)	(0.9220)	(0.9220)	(0.9220)	(0.9220)	(0.9185)	(0.9196)	(0.9203)	(0.9218)	(0.9310)	(0.9081)
	>0.05	0.7778	0.8370	0.8694	0.8978	0.9074	0.9317	0.7778	1.0000	1.0000	0.8917	0.9398	0.9699
	≥0.95	(0.9544)	(0.9544)	(0.9544)	(0.9544)	(0.9544)	(0.9544)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9591)
	1	0.7556	0.8074	0.8528	0.8867	0.9037	0.9254	0.7778	1.0000	1.0000	0.8917	0.9398	0.8512
	>0.0	0.9111	0.9370	0.9528	0.9622	0.9667	0.9603	0.9000	1.0000	0.8333	0.9931	0.8500	0.9282
	<i>≥</i> 0.8	(0.8173)	(0.8173)	(0.8173)	(0.8173)	(0.8173)	(0.8173)	(0.8208)	(0.8316)	(0.8393)	(0.8438)	(0.8798)	(0.8134)
	≥0.85	0.9444	0.9630	0.9722	0.9756	0.9630	0.9762	0.9000	1.0000	0.8333	0.9931	0.8500	0.9699
		(0.8626)	(0.8626)	(0.8626)	(0.8626)	(0.8626)	(0.8626)	(0.9176)	(0.9198)	(0.9213)	(0.9252)	(0.8798)	(0.8811)
第2组	≥0.9	0.9500	0.9667	0.9750	0.9733	0.9796	0.9698	0.9000	1.0000	0.8333	0.9931	0.8600	0.9282
		(0.9229)	(0.9229)	(0.9229)	(0.9229)	(0.9229)	(0.9229)	(0.9176)	(0.9198)	(0.9213)	(0.9252)	(0.9414)	(0.9376)
	<u>\</u> 0.05	0.9500	0.9500	0.9667	0.9583	0.9689	0.9667	0.9000	1.0000	0.8400	0.9862	0.8917	0.9282
	≥0.95	(0.9508)	(0.9508)	(0.9508)	(0.9508)	(0.9508)	(0.9508)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9713)
	1	0.9444	0.9519	0.9611	0.9622	0.9704	0.9730	0.9000	1.0000	0.8400	0.9862	0.8917	0.9500
	>0.0	0.7349	0.6185	0.7028	0.7689	0.8056	0.8381	0.7556	1.0000	0.8148	0.9931	0.9020	0.8912
	≥0.0	(0.8507)	(0.8507)	(0.8507)	(0.8507)	(0.8507)	(0.8507)	(82.88%))(0.8324)	(0.8366)	(0.8513)	(0.8319)	(0.8261)
	>0.95	0.5278	0.6259	0.7222	0.7778	0.8259	0.8159	0.6900	1.0000	0.9028	0.9931	0.9028	0.9514
	≫0.05	(0.8507)	(0.8507)	(0.8507)	(0.8507)	(0.8507)	(0.8507)	(91.66%))(0.9108)	(0.9200)	(0.8513)	(0.9049)	(0.8904)
第3组	>0.0	0.5778	0.6926	0.7667	0.8156	0.8426	0.8683	0.7333	1.0000	0.9028	0.9757	0.9028	0.8912
	≥0.9	(0.9148)	(0.9148)	(0.9148)	(0.9148)	(0.9148)	(0.9148)	(91.66%))(0.9108)	(0.9200)	(0.9267)	(0.9049)	(0.9450)
		0.5722	0.6852	0.7444	0.7933	0.8352	0.8381	0.7141	1.0000	0.8148	0.9930	0.9083	0.9514
	<i>≫</i> 0.90	(0.9513)	(0.9513)	(0.9513)	(0.9513)	(0.9513)	(0.9513)	(1.0000)	(1.0000)	(1.0000)	(1.0000)	(0.9595)	(0.9835)
	1	0.5722	0.6704	0.7528	0.8000	0.8278	0.8556	0.6667	1.0000	0.8148	0.9930	0.9028	0.8912

5 结论

对于噪声图像的识别问题,降噪和降维是两个极其重要的环节。目前大多数的降噪技术和降维技术都 是独立进行学习的,很少进行一体化学习。雷等人提出的基于 PDEs 的 CCA 方法虽然可以同时对图像进行 降噪降维处理,但需将图像拉长为向量,这种拉长不仅破坏了图像的几何结构,而且可能导致"维度灾难",增 加算法的计算复杂度。本文提出的 2D-CCA 和 PDEs 一体化学习算法是雷方法的改进和扩展,弥补了雷方 法中的缺陷。同时研究了 PDEs 的进化对选择 2D-CCA 中 CCR 的影响。实验结果表明 PDEs 的进化可以 弱化 CCR 的选择问题,甚至不用考虑这一问题,且识别精度明显优于雷等人提出的算法,同时所需的 PDEs 的进化次数也明显少于雷等人所提算法。在本文的基础上可以考虑 PDEs 对双向 2D-CCA 中 CCR 的影响, 这将是我们的下一步工作。

(下转第95页)