文章编号 1672-6634(2020)04-0072-06

DOI 10. 19728 /j. issn1672-6634. 2020. 04. 011

从二苯胺到咔唑取代:芘类化合物发光性质的理论研究

宋晓娟 褚 赛 巩光帅 王传增 赵保忠 张莉莉 张 天

(山东理工大学化学化工学院,山东淄博 255049)

摘 要 我们从第一性原理出发,对比研究了两种 D-A 型芘类化合物 2DPA-PY 和 2CBZ-PY 的发光性质.研究发现,理论计算的 2DPA-PY 的发光性质与实验结果一致,而理论预测的 2CBZ-PY 的发光波长相比于 2DPA-PY 蓝移且发光效率更高.将给体从二苯胺替换为咔唑,可以增大 S₀和 S₁ 之间的能隙,从而加快辐射衰减过程和减慢无辐射衰减过程.研究结果可以为芘类有机发光材料的 分子设计提供理论参考.

关键词 芘;二苯胺;咔唑;发光性质

中图分类号 O641.12

文献标识码 A

0 引言

芘是由四个苯环稠合而成的多环芳烃,最初被用于合成染料^[1].现如今,芘类化合物在有机电子、化学传 感和生物成像等领域都得到了广泛应用^[2,3].为了进一步开发高效的有机光电子器件,调控芘类化合物的发 光性质引起了研究工作者的兴趣.Yamato 等人报道了一种给体-受体(D-A)型芘类荧光分子,D 为二苯胺 (DPA),A 为叔丁基芘(PY),即 2DPA-PY(如图 1 所示).实验结果表明,在二氯甲烷溶液中 2DPA-PY 的荧 光量子产率(Φ_ℓ)为 82.0%,且在 DPA 的苯环对位引入给电子基团(Me_xtBu_xOMe),可以调控衍生物的发光

颜色从蓝色到黄色^[4]. 然而,溶液下衍生物的 $Φ_f$ 却随着 取代基给电子能力的增强而减小. 最近,我们又在相同 位置添加了吸电子基团(F、CF₃、CN)并开展了第一性原 理研究,发现溶液下衍生物的 $Φ_f$ 随着取代基吸电子能力 的增强而增强,还预测出 CN 衍生物的 $Φ_f$ 最高可以达到 89.6%^[5]. 由此可见,通过降低 D-A 型分子中给体的给 电子能力,可以有效提高溶液下这类化合物的 $Φ_f$.本文 我们不再沿用 DPA 的给体,而是将其直接替换为给电 子能力更弱的咔唑(CBZ)^[6,7],即设计出 2CBZ-PY(如图

1 所示),以期得到更高的发光效率.通过对比研究 2DPA-PY 和 2CBZ-PY 的电子结构和激发态性质,从而得出这类 D-A 型芘类化合物分子结构和发光性能之间的关系.

1 理论部分

我们分别采用密度泛函理论(DFT)^[8,9]和含时密度泛函理论(TD-DFT)^[10]对分子的基态(S₀)和第一单 重激发态(S₁)进行电子结构计算.使用 PBE0^[11]泛函和 6-31G(d)基组进行结构优化,该计算水平已成功应 用于描述有机荧光分子的单重激发态^[12,13].然而,由于 PBE0 这类传统泛函往往会低估分子内电子转移 (ICT)态的激发能^[14],所以我们在 PBE0 优化好的几何结构基础上,再用 MPW1B95^[15]/6-31G(d)水平计算

收稿日期:2020-03-08

基金项目:国家自然科学基金项目(21703122);山东省自然科学基金项目(ZR2019BB067)资助

通讯作者:张天,女,汉族,博士,副教授,研究方向:有机光电材料的理论与计算模拟,E-mail:tzhang@sdut.edu.cn.

分子的跃迁性质. 二氯甲烷的溶剂化效应通过极化连续介质模型(PCM)来模拟. 上述计算是在 Gaussian 16 软件^[16]中完成的. 基于上述计算得到的电子结构和振动信息,我们再用热振动关联函数方法计算振动分辨 的吸收、发射光谱和发光量子效率.

辐射跃迁速率常数(k_r)和无辐射跃迁速率常数(k_m)共同决定分子的发光效率,即 $\Phi_f = \frac{k_r}{k_r + k_m} = \frac{k_r}{k_r + k_k + k_{isc}}$.其中 k_i 是内转换速率常数, k_{isc} 是系间窜越速率常数.我们之前的研究表明这类 D-A 型芘类化合物 S₁和 T₁态之间的自旋-轨道耦合常数(SOC)非常小(0.12-0.34 cm⁻¹)^[5],故 k_{isc} 可以忽略不计.

吸收光谱和发射光谱的解析表达式[17]可以分别写作

$$\sigma_{ab}^{FC}(\boldsymbol{\omega},T) = \frac{2\pi\boldsymbol{\omega}}{3\hbar c} \|\boldsymbol{\mu}_0\|^2 \int_{-\infty}^{\infty} e^{i(\boldsymbol{\omega}-\boldsymbol{\omega}_{fi})t} Z_i^{-1} \rho_{ab,0}^{FC}(t,T) dt , \qquad (1)$$

$$\sigma_{\sigma m}^{FC}(\boldsymbol{\omega},T) = \frac{2\omega^3}{3\pi\hbar c^3} |\boldsymbol{\mu}_0|^2 \int_{-\infty}^{\infty} e^{-i(\boldsymbol{\omega}-\boldsymbol{\omega}_{if})t} Z_i^{-1} \rho_{\sigma m,0}^{FC}(t,T) dt , \qquad (2)$$

其中 μ_0 是在弗兰克-康登近似下的电子跃迁偶极矩, $\rho_{ab,0}^{FC}(t,T)$ 和 $\rho_{em,0}^{FC}(t,T)$ 是吸收和发射过程的热振动关联函数, Z_i 是配分函数, k_r 可以通过对发射光谱 $\sigma_{em}^{FC}(\omega,T)$ 进行积分得到

$$k_r(T) = \int \sigma_{em}^{FC}(\omega, T) \, \mathrm{d}\omega \,. \tag{3}$$

基于费米黄金规则得到的 k_w表达式^[17,18]可以写作

$$k_{m}(T) = \sum_{kl} \frac{1}{\hbar} R_{kl} \int_{-\infty}^{\infty} \left[e^{i\omega_{if}t} Z_{i}^{-1} \rho_{i\epsilon,kl}(t,T) \right] \mathrm{d}t , \qquad (4)$$

其中 ρ_{k,kl}(t,T) 是内转换过程的热振动关联函数,Z_i 是 配分函数. R_{kl}表示非绝热电子耦合矩阵元,可以根据林 圣贤等人的一阶微扰理论^[19]得到.为确保关联函数的收 敛,两分子 k_m的计算均采用了洛伦兹展宽(FWHM=10. 62 cm⁻¹). k_r和 k_m是在 MOMAP 程序^[20]中计算得到的.

2 结果与讨论

2.1 几何结构

2DPA-PY和2CBZ-PY的激发态性质与其在S₀和

 S_1 的结构差异密切相关.为了进行直观的比较,我们叠合了它们在 S_0 和 S_1 态的几何结构,并通过 VMD 程 $\hat{F}^{[21]}$ 计算了两者的均方根位移(RMSD)(如图 2 所示).RMSD 用于定量表征两个态之间的几何偏差,其定

义式为 RMSD= $\sqrt{\frac{1}{n}\sum_{i}^{n} [(x_{i} - x_{i}^{'})^{2} + (y_{i} - y_{i}^{'})^{2} + (z_{i} - z_{i}^{'})^{2}]}$,其中, $x_{i} - x_{i}^{'}$ 是指第 *i* 个原子在 S₀和 S₁ 态平衡构型下 *x* 轴方向的差值, $y_{i} - y_{i}^{'}$ 和 $z_{i} - z_{i}^{'}$ 则分别表示其在 *y* 轴和*z* 轴方向的差值, $i = 1, 2, 3, \cdots$, *n*(*n* 为该分子的原子个数).我们以 DPA 和 CBZ 为例,将两分子取代基部分的原子坐标列于表 1 中.从图 2 的几何结构对比图和 RMSD 数值可以看出,在从 S₀到 S₁的跃迁过程中,2CBZ-PY 比 2DPA-PY 的结构变化 更明显.在表 2 中我们列出了图 1 所示的六个重要二面角的几何参数,包括 D 骨架内部的苯环转动角(1、2、 3、4 位)及 D 和 A 骨架相连部位的扭转角(5、6 位),S₀/S₁和 Δ 分别表示分子在 S₀/S₁ 平衡构型下的结构参数和它们之间的差值.可以看出,从 S₀到 S₁,2CBZ-PY 的 5、6 位扭转角变化最大,分别是 9.13°和 8.85°,而 它的其他四个二面角和 2DPA-PY 的六个二面角却变化较小(<3°).

图 2 S₀(黑色)和 S₁(蓝色)的儿何结构对比图

表 1 取代基部分的原子坐标

		DPA So			DPA S ₁					CBZ So			CBZ S ₁		
i	原子	x_i	y_i	z_i	x_i	yi [′]	z_i	i	原子	x_i	y_i	z_i	x_i	y _i '	$z_i^{'}$
58	Ν	1.592	2.427	0.127	1.642	2.419	0.194	56	Ν	1.526	2.423	0.156	1.551	2.412	0.108
59	С	2.707	2.603	-0.722	2.717	2.598	-0.699	57	С	2.401	2.919	-0.803	2.519	2.832	-0.798
60	С	2.614	2.224	-2.068	2.575	2.197	-2.036	58	С	2.691	2.416	-2.071	2.899	2.245	-2.004
61	Н	1.679	1.820	-2.444	1.628	1.782	-2.367	59	Н	2.218	1.511	-2.440	2.433	1.329	-2.353
62	С	3.707	2.367	-2.915	3.632	2.343	-2.923	60	С	3.605	3.120	-2.846	3.886	2.884	-2.747
63	Н	3.616	2.067	-3.956	3.506	2.037	-3.958	61	Н	3.851	2.751	-3.838	4.204	2.450	-3.690
64	С	4.905	2.902	-2.444	4.844	2.890	-2.498	62	С	4.213	4.295	-2.377	4.472	4.078	-2.304
65	С	4.998	3.283	-1.107	4.988	3.285	-1.169	63	С	3.915	4.792	-1.114	4.075	4.667	-1.104
66	Н	5.928	3.692	-0.721	5.932	3.697	-0.822	64	Н	4.384	5.704	-0.755	4.523	5.600	-0.774
67	С	3.916	3.128	-0.247	3.939	3.137	-0.269	65	С	3.001	4.102	-0.313	3.091	4.042	-0.342
68	Н	4.006	3.411	0.797	4.065	3.423	0.771	66	С	1.564	3.261	1.265	1.503	3.329	1.153
69	С	1.360	3.289	1.221	1.395	3.329	1.233	67	С	0.875	3.151	2.472	0.724	3.292	2.310
70	С	0.896	2.785	2.442	0.847	2.875	2.444	68	Н	0.191	2.328	2.657	0.029	2.479	2.493
71	Н	0.742	1.716	2.556	0.668	1.813	2.579	69	С	1.098	4.134	3.429	0.876	4.335	3.216
72	С	0.634	3.646	3.503	0.557	3.777	3.460	70	Н	0.575	4.074	4.379	0.281	4.338	4.125
73	Н	0.273	3.234	4.442	0.139	3.410	4.393	71	С	1.983	5.197	3.194	1.784	5.377	2.983
74	С	0.842	5.017	3.375	0.807	5.138	3.294	72	С	2.670	5.296	1.991	2.573	5.395	1.835
75	С	1.309	5.521	2.162	1.349	5.592	2.090	73	Н	3.359	6.118	1.814	3.288	6.196	1.669
76	Н	1.469	6.589	2.040	1.537	6.652	1.943	74	С	2.465	4.321	1.011	2.436	4.363	0.910
77	С	1.558	4.672	1.090	1.637	4.704	1.064	75	Н	2.133	5.949	3.964	1.880	6.176	3.712
78	Н	1.904	5.076	0.143	2.032	5.068	0.121	76	Н	4.923	4.820	-3.010	5.240	4.552	-2.906
79	Н	0.642	5.685	4.208	0.580	5.839	4.092								
80	Н	5.755	3.019	-3.110	5.669	3.003	-3.195								

表 2 重要二面角(以度为单位)

	S_0	S_1	Δ	S_0	S_1	Δ	
		2DPA-PY			2CBZ-PY		
1	42.44	41.51	0.93	-4.69	-5.45	0.76	
2	27.33	24.52	2.81	3.22	1.34	1.88	
3	-42.67	-41.17	1.50	4.78	5.76	0.98	
4	-27.27	-24.84	2.43	-3.38	-1.66	1.72	
5	63.75	62.05	1.70	-72.85	-63.72	9.13	
6	-63.66	-61.63	2.03	73.97	65.12	8.85	

2.2 跃迁性质

在表 3 中我们列出了 2DPA-PY 和 2CBZ-PY 的跃迁性质. 计算所得的 2DPA-PY 的垂直激发能 ΔE_{vert} 与已有实验值(exp.)吻合地很好,计算值与实验测得的吸收和发射峰的偏差仅分别为 0.08 eV 和 0.01 eV,斯托克斯位移(即吸收和发射峰能量的差值)为 0.27 eV. 而与 2DPA-PY 相比,理论预测的 2CBZ-PY 的吸收和发射峰均发生了蓝移,且斯托克斯位移更大,为 0.32 eV. 从表 3 可知,它们的跃迁成分主要是 HOMO→LU-MO,表现出明显的 ICT 特征(如图 3 所示). 2CBZ-PY 的 HOMO-LUMO 能差比 2DPA-PY 大,因而发光波长会发生蓝移. 2CBZ-PY 的电子跃迁偶极矩 μ_0 小于 2DPA-PY,表明其 HOMO 和 LUMO 轨道的重叠小于

2DPA-PY,这是由 CBZ 较大的位阻所引起的^[22].而两者的振子强度 f 却非常接近,这是因为 f 不仅与 μ_0^2 成正比,还与两个态之间的能量差成正相关.尽管 2CBZ-PY 的 μ_0 小于 2DPA-PY, ΔE_{vert} 却大于 2DPA-PY. 表 3 垂直激发能(ΔE_{vert})、实验值(exp.)、电子跃迁偶极矩(μ_0)、振子强度(f)和跃迁成分(HOMO→LUMO)

		$\Delta E_{ m vert}$	exp.	μ_0	f	HOMO→LUMO
2DDA DV	吸收	2.91 eV(426 nm)	2.99 eV(414 nm)	6.78 D	0.51	96.9%
2DPA-P1	发射	2.64 eV(470 nm)	2.65 eV(467 nm)	7.29 D	0.53	96.9%
PCDZ DV	吸收	3.24 eV(382 nm)	N. A.	4.78 D	0.28	94.5%
2CBZ-P I	发射	2.92 eV(425 nm)	N. A.	6.82 D	0.52	94.9%

2.3 重整能

在跃迁过程中分子结构的变化程度和斯托克斯位移的大 小与两个电子态交互转化过程中的重整能有关^[23].总重整能 分为 λ_g 和 λ_e ,分别反映了基态和激发态势能面上的结构和振动 弛豫程度.在位移谐振子近似下,每个振动模式的重整能 λ_j 可 以表示为 $\lambda_j = \hbar S_j \omega_j = \frac{1}{2} D_j^2 \omega_j^2$, S_j 是黄昆因子, D_j 是模式位 移,所有模式 λ_j 的加和为 $\lambda_{g(e)}$.上述模式分析是在 MOMAP 程 序中的 EVC 模块中实现的. 2DPA-PY 的 λ_g 和 λ_e 分别是 133 meV 和 135 meV,2CBZ-PY 则分别为 160 meV 和 169 meV. 2CBZ-PY 的 $\lambda_{g(e)}$ 比 2DPA-PY 大,意味着它在激发态弛豫过程 中的结构变化程度更大.斯托克斯位移本质上是 λ_g 与 λ_e 的和, 即 2CBZ-PY 的斯托克斯位移更大.由于 λ_g 和 λ_e 相近,我们以 λ_e 为例,将其分解到 3N-6 个振动模式(如图 4 所示).我们发

能差和电子云密度轮廓图

现,在低频振动区(< 200 cm⁻¹),2CBZ-PY的重整能(33 meV)比 2DPA-PY(14 meV)高 19 meV,贡献最大的位于 20 cm⁻¹处的振动模式属于 CBZ 的面外扭转运动.而在高频振动区(>1400 cm⁻¹),2CBZ-PY 的重整能(80 meV)比 2DPA-PY(65 meV)高 15 meV,这些振动模式的类型主要是环的 C=C 伸缩和 C-H 面内弯曲运动.因此,2CBZ-PY 比 2DPA-PY 总重整能高的主要原因是其低频和高频振动区对 λ。的贡献都较大.

2.4 发光效率

计算得到的室温下振动分辨的吸收和发射光谱如图 5 所示. 谱线的展宽源于分子的振动结构和温度效 应,计算中并没有额外引入展宽因子. 2CBZ-PY 的吸收和发射光谱相对于 2DPA-PY 均发生了明显的蓝移, 这与我们先前计算的垂直跃迁性质是一致的. 在表 4 中我们列出了计算所得的 k_r, k_m 和 Φ_f . 2DPA-PY 的 Φ_f 计算值与已有实验值相差很小,这进一步说明了计算方法的合理性. 理论预测的 2CBZ-PY 的 k_r 比 2DPA-PY 大, k_m 比 2DPA-PY 小. 由爱因斯坦自发辐射关系^[24,25]可知, k_r 与 f 和 Δ E_{aert} 的平方成正比. 尽管 2CBZ-PY 的 f 与 2DPA-PY 非常接近(见表 3),但其 Δ E_{aert} 大于 2DPA-PY,故 2CBZ-PY 的 k_r 大. 为了更深入地理 解它们的无辐射衰减过程,我们画出了两者的无辐射谱线(如图 6 所示). 当能隙 ΔE 等于绝热激发能 Δ E_{aert} 时,对应的纵坐标即为 $\log(k_m)$. 根据能隙定律^[17,19],当 ΔE 足够大的时候, $\log(k_m)$ 几乎随着 ΔE 的增加而线 性减小. 即 ΔEad 越大, km 越小. 2DPA-PY 和 2CBZ-PY 的 ΔEad 分别是 2.78 eV 和 3.07 eV, 故 2CBZ-PY 的 k_m小.因此,增大的 k_r和减小的 k_m使得 2CBZ-PY 的 Φ_f比 2DPA-PY 大,其计算值为 93.8%,比我们之前通 过在 DPA 对位引入吸电子基团所得的衍生物还要高.

		-	
	k_r/s^{-1})	k_{nr}/s^{-1}	$arPhi_{f}$
2DPA-PY	1.5×10^{8}	4.1 \times 10 ⁷	78.5%(82.0%)
2CBZ-PY	1.8×10^{8}	1.2×10^{7}	93.8%(N.A)

结论 3

本文采用热振动关联函数方法和极化连续介质模 型,研究了溶液下两种 D-A 型芘类化合物 2DPA-PY 和 2CBZ-PY 的发光性质. 研究表明,将给体从二苯胺替换 为给电子能力更弱的咔唑后,2CBZ-PY比 2DPA-PY的 结构变化程度和斯托克斯位移更大,通过对重整能的分 析,我们找出了它们在激发态弛豫过程中的能量耗散通 道. 2CBZ-PY 的发射波长相对于 2DPA-PY 蓝移,根据爱 因斯坦自发辐射关系可得其辐射速率增大.2CBZ-PY的 绝热激发能比 2DPA-PY 大,由能隙定律可知其无辐射 速率减小.加快的辐射过程和减慢的无辐射过程使得 2CBZ-PY 的发光效率比 2DPA-PY 更高,其理论预测值为 93.8%.

- 茗 文 献
- [1] Welham R D. The early history of the synthetic dye industry. I. The chemical history [J]. J Soc Dyers Color, 1963, 79(3): 98-105.
- [2] Islam M M, Hu Z, Wang Q S. Pyrene-based aggregation-induced emission luminogens and their applications[J]. Mater Chem Front, 2019, 3(3): 762-781.
- [3] 钟克利,郭宝峰,周雪,等.基于芘的离子荧光化学传感器[J].化学进展,2015,27(9):1230-1239.
- [4] Wang C Z, Ichiyanagi H, Sakaguchi K, et al. Pyrene-based approach to tune emission color from blue to yellow[J]. J Org Chem, 2017, 82(14): 7176-7182.
- [5] Zhang T, Chu S, Lin L L, et al. Substitution induced tunable emission of an airplane-like pyrene-based fluorophore; First-principles study[J]. Chem Phys Lett, 2019, 734, 136726.
- [6] 刘志强,曹笃霞,方奇,等. 氮硼为电子授受中心的 D-π-A 化合物的合成与上转换荧光[J]. 化学学报,2004,62(20):2103-2108.
- [7] 万中全. 燃料敏化太阳能电池光电转换材料研究[D]. 成都:电子科技大学,2013.
- [8] Parr R G, Yang W. Density-functional theory of atoms and molecules [M]. New York: Oxford Science Publication, 1989.

- [9] DreizlEr R M, Gross E K U. Density Functional Theory[M]. Heidelberg: Springer-Verlag, 1990.
- [10] Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Phys Rev Lett, 1984, 52(12): 997-1002.
- [11] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. J Chem Phys, 1999, 110(13): 6158-6170.
- [12] Jacquemin D, Wathelet V, Perpète E A, et al. Extensive TD-DFT benchmark: singlet-excited states of organic molecules[J]. J Chem Theory Comput, 2009, 5(9): 2420-2435.
- [13] 朱国正,巩光帅,宋晓娟,等. 氧桥连四苯乙烯衍生物发光性质的理论研究[J]. 聊城大学学报(自然科学版),2020,33(3):57-61.
- [14] Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chem Rev, 2005, 105(11): 4009-4037.
- [15] Zhao Y, Truhlar D G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der waals interactions[J]. J Phys Chem A, 2004, 108(33): 6908-6918.
- [16] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian16 Revision B.01[CP]. Gaussian Inc. Wallingford, CT, 2016.
- [17] Niu Y L, Peng Q, Deng C M, et al. Theory of excited state decays and optical spectra: application to polyatomic molecules[J]. J Phys Chem A, 2010, 114(30): 7817-7831.
- [18] Peng Q, Yi Y P, Shuai Z G, et al. Toward quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation[J]. J Am Chem Soc, 2007, 129(30): 9333-9339.
- [19] Lin S H. Rate of interconversion of electronic and vibrational energy[J]. J Chem Phys, 1966, 44(10): 3759-3767.
- [20] Niu Y L, Li W Q, Peng Q, et al. MOlecular MAterials Property Prediction Package(MOMAP) 1. 0: a software package for predicting the luminescent properties and mobility of organic functional materials[J]. Mol Phys, 2018, 116(7-8): 1078-1090.
- [21] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. J Mol Graph Model, 1996, 14(1): 33-38.
- [22] Peng Q, Fan D, Duan R H, et al. Theoretical study of conversion and decay processes of excited triplet and singlet states in a thermally activated delayed fluorescence molecule[J]. J Phys Chem C, 2017, 121: 13448-13456.
- [23] Wu Q Y, Zhang T, Peng Q, et al. Aggregation induced blue-shifted emission-the molecular picture from a QM/MM study[J]. Phys Chem Chem Phys, 2014, 16: 5545-5552.
- [24] Wolf E. Progress in Optics[M]. AmsterDam: North-Holland Publishing Company, 1977.
- [25] Turro N J, Ramamurthy V, Scaiano J C. Modern Molecular Photochemistry of Organic molecules [M]. Sausalito: University Science Books, 2010.

Substitution from Diphenylamine to Carbazole: Theoretical Study on the Luminescent Properties of Pyrene-Based Compounds

SONG Xiao-juan CHU Sai GONG Guang-shuai WANG Chuan-zeng ZHAO Bao-zhong ZHANG Li-li ZHANG Tian

(School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract We comparatively investigate the luminescent properties of two D-A type pyrene-based compounds, namely 2DPA-PY and 2CBZ-PY from first-principles. It is found that the theoretically calculated optical emission properties of 2DPA-PY agree well with the experiment, whereas those of 2CBZ-PY are predicted to be blue-shifted and brighter. Substitution of the donor from diphenylamine to carbazole enlarges the energy gap between S_0 and S_1 , thus accelerates its radiative decay process and slows down the non-radiative one. Our results provide a theoretical reference for the molecular design of pyrene-based organic luminescent materials.

Key words pyrene; diphenylamine; carbazole; luminescent properties