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Numerical Stability and Oscillation of a kind of
Functional Differential Equations
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Abstract The paper focuses on the stability and oscillation of numerical solutions for a kind of
functional differential equations. Firstly, the conditions of numerical stability and oscillation are
obtained by using the #-methods. Secondly, we studied the preservation behavior of numerical
methods for the two dynamical properties,namely under which conditions the stability and oscilla-
tion of the analytic solution can be inherited by numerical methods. Finally,some numerical exam-
ples are given.
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0 Introduction

As a special kind of functional differential equations, the differential equation with piecewise continu-

ous arguments (DEPCA) has aroused lots of attention. Various properties of DEPCA have been investiga-

[16] [4,11]

ted deeply. Such as convergence''", stability ,oscillation'?, periodicity'', bifurcation" and asymptotic

behavior™™ ,etc. However,all papers mentioned above deal with the properties of analytic solution of DEP-

CA. Nowadays,it is worth noting that numerical analysis of DEPCA be of particular interest for many sci-

-7 and numerical

entists. Some important properties such as numerical stability"® , numerical oscillation
dissipativity®'™ were investigated. In recent two papers [9,17],the authors discussed numerical approxima-
tion of DEPCA in stochastic and impulsive case, respectively. In the case of PDE, some our contribu-

tionsH?1%

maybe noted. Different from above cases,in the present work, we shall study both numerical sta-
bility and oscillation for a more complicated DEPCA with scalar coefficients,and get some new results.
In this paper we consider the following DEPCA

t+1

u (1) = au(t) —Q—bu([t])—l-cu(Z[T]) , u(0) = uy » @)

here a,b,c are all real coefficients and u,is initial condition, [+ ] denotes the greatest integer function. In
particularly , when ¢=0,the equation in Eq. (1) becomes « (¢) = au(¢) +bu([¢]) ,which is exactly the case
of [8].If b=0,the equation in Eq. (1) becomes u (t) = au (1) +cu(2[ (t+1)/27]) ,which is exactly the case
of [10]. Thus,the results in this paper are the generalization of corresponding ones in [8] and [10]. The following

results for the analytical stability and oscillation of Eq. (1) will be useful for the upcoming analysis.
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Theorem 1'*) The analytic solution of Eq. (1) is asymptotically stable for any initial value,il one of

the following cases is true

(a+b+C —DW(at+b—0c)e* —(b—a—c)) <O,
/e —1 0 2)
{(a+b+c‘)(e“ D@t bt — (—aton <o, T Y “
and
b+Ob+2 W +be+26+2) <0, c#1, a=0. (3)

Theorem 2M"! Assume that a 7= 0 ,then Eq. (1) is oscillatory if and only if one of the following condi-

tions is true

ae“ ) a
b= e“—l’c>e“—17
L S N 8
e’ —1 e’ —1 et — 1
bt o <— -2
e — 1

1 The discrete scheme
Seth = 1/m (m = 1) be stepsize,we consider the linear # -method to Eq. (1)
s =ty + RO+ b ([ DRD + et 2L T2

nh+1

+ (11— Cau, + bu" ([nh ) 4 cu” (2[ D» 5

and the one-leg @ -method to Eq. (1)

teir =ty +haCOuyy + (= Ou,) +bu" (LA ]) +w’%2[%

here € [0,1] s u, » u" ([nh]) and u" (2[ (wh +1)/27]) denote approximations to u(z) » u([z]) and «(2[ (z++
1)/27]) att, ,respectively.

Letn =km+1([=0,1,.m—1) ,we define u" (¢, +h) as up, o u" (2[ (1, + +1)/27]) as us, accord-
ing to [8,10],where 0 << 7<< 1. Thus Eqgs. (5) and (6) can be reduced to the same recurrence relation

DR (6)

QU g+t + yl U o k iS even,
Upp+14+1 — . 7
QU pts T Pty + Votbriym s ks odd,
. ha ) _ h+0o _ K
wherea = 4 T P T T g T e T T G
It is easily seen that Eq. (7) is equivalent to the following two cases
(1) fa#0,
(a ,+1+b+c( MY — 1)) uy, s k is even,
Upp+1+1 — ) (8)
(@'~ b (@ = 1)t + S (a = Ducgrim» k is odd,
a
(d' +b+t( "— 1)) up, s k is even,
u, = 9
(@ 42— 1)t + <@ — Ducirns b is odd.
a a
2) Ha=0,

A+hd+D b+ c))ug, » k is even,
Upm+i+1 — . (10)
(1 +h(l + 1)[))”,{»,” +h(l + 1)C'u(k,+1),,, 9 k is Oddy
(A A A ) uy, s k is even,
o {(1 + hlb) g, + hlct i, ok is odd.
Theorem 3 Assume that A % 0 ,then Eq. (1) has the numerical solution

=@ bk bte

b+<

an

@ — 1>>a'+%<a'—1></um+ G —b) XN wyon = (2 — D1y j = 1,250en,

@+ @ —1)DNugsn = 2jm + 1,5 = 0,1,2, 12)
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fora # 0 ,wherel = 0,1,2,+*,m — 1 and
_ @+ —D/a)@" + b+ —1)/a)

A
1—c@" —1)/a
and
(B +bc+b+2A2Dhl+b+c+ DNV 'uy, n=(Q2j —Dm—+1, j =1,2,%+, (13)
u, —
(b+ Dl +DXNuys n=2jm+1, ] =0,1,2,
fora = 0 ,wherel = 0,1,2,*sm—landA = b+ Db+ c+1D/(1—¢).
Proof Assume that u, is a solution of Eq. (7) with conditions u,;, = d»; and uzj—1),, = ds;—1 . It follows
from (9) that
@+ L = 1D uasim + S = Dy s = (2j = D+ 1, j = 12,00,
a a
u, = (14)
(@ + 2 = D s = 2jm + 10 j = 0.1.2,0.
a
From (14) and (8) with/ = m — 1 we have
(=S = D)y = @ +aﬁ<am DDty e = 1a240e
wern = (@ 4 P = D)y = 041,20,
which implies that
"’er(a”’*l)/a .
d? :a d979 :192""$
2j 1 — c(a” 71)/61 2j—1 2]
(15)

d2/+1 — (" +m(am—1))d2/ ’]' =0,1,2,-,
a

hence

dyyr = (a" + b(a *1)/a)‘(am+(b+c)(a 71)/a)dz,71 — Ay
1—cla"—1)/a

then if @ #% 0 and A %% 0 we get (12). Formula (13) can be obtained in the same way. The proof is complete.

2 Stability and oscillation of numerical solution

Lemmal w«, >0asn—> o ifandonlyif | A|[<{1,whereAis defined in Theorem 3.
Theorem 4 The numerical solution of Eq. (1) is asymptotically stable for u,,if one of the following

cases 1S true

(a+b+)@—Da+b—c)a" —(b—a—c)) <0,
cFa/(a"—1).,a#0 (16)
(a+b+)@—D{(a+b+D)a" —(b—a+c)) <0,
and
b+ +2)WB* +bc+20+2)<<0,c%41, a=0. an

Proof According to Lemma 1 and Theorem 3 we know that the numerical solution of Eq. (1) is as-

ymptotically stable if and only if
(" +bl@" —D/a) (@ + W+ —1)/a)

1— @ — D/a ‘< ! (18
fora # 0 and
<b+1>1</ic+1>‘<1 (19)
fora=0.
If a # 0 ,from (18) we have the following two inequalities hold
a" +bla" —1)/a w b+,
et~ /a <1, a+7a (a 1)‘<19
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which are equivalent to

ol 1 Ll 1)
( a +1)¢( @ —1) <o,
1—S @ —1 1— S —1
a a

mm+9§£mm—1»+nmm+égimm—1y—n<:m

so we can get (16). If a = 0 ,similar to the case of a 7 0 ,we can get (17) from (19).
From Theorem 3 we have the following corollary.

Corollary 1 Assume that a % 0 then
(! Jrﬁ(al — D)ds— + S — Ddyyon=Q2j—Dm—+1,j =1,2,--,
a a

b+c¢

(o +5———0" — D)dyjn=2jm+1.57 =0,1,2,-,
a

where d; = u;, and satisfies (15).

It is easy to check that the following two lemmas are hold.

Lemma 2 Sequence u, =— aa'/(a’ — 1) is strictly monotonic increasing for/ = 0,1,+*,m anda # 0 .

Lemma 3 Assume that b+ ¢ >—aa”/(a” —1) holds,thenb—+c¢ >—aa'/(a’ —1) holds forl = 0,1, -+,
m — 1 implies thato' + b+ ) (@ —1)/a > 0.

Theorem 5 Assume thata # 0 ,then Eq. (7) is oscillatory if and only if any of the following condi-
tions is satisfied

m

aa a
b> a/”*l,c>am*1’
h<<— -2 <L o> (20)
a" —1 a” — 1 a” — 1
bte<—
o

Proof  Sufficiency. It follows from (19) that the sequence {d;} oscillates under any of the condition
(20). Since u;,, = d; forj = 0,1,++, so u, also oscillates.

Necessity. We assume that any of the following hypotheses is satisfied

w” @ aw”
b <7 m 4 C > m 4 b + C >7 m ’
a” —1 a” — 1 a” —1

m m

aa a aa
’ ’ b - .
mo___ 1 C < a m ___ 1 + C > a mo___ 1

Let u, be the solution of Eq. (7),then from (15) and (21) we haved; >0 forj = 0,1,2,++-. By Corol-

@D

b >—
a

lary 1,Lemmas 2 and 3 we get

(1) Forn =2m+/landj = 0,1,2,--

u, = (d + o —1))d,y,; > 0.

b+c<
a
(2) Forn=(2j—Dm-+Llandj = 1,2,

u, = 01[612,71 + i(az — 1)(bd2,,71 + Cdz,,') = (dzﬁl + idZﬁI + Ldz_/)al - L)dlz*l - Ldz.h
a a a a a

So we know that u, is a monotonous sequence for n = (2j — 1)m -+ [ . On the other hand, w;—1yim =
ds; at [ = m ,s0 u, has the minimum value ds; or d,; | forn = (2 —1)m + [ ,namely
u, = min{dy; »ds; } > 0.
Combining (i) with (ii) , we obtain u, > 0 for n = km 4/ . This contradicts the assumption that u, oscil-

lates. The proof is complete.
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3 Preservation of stability

Definition 1 The set of all triples (a,b,c) which satis{y the condition (2) is called an asymptotical
stability region denoted by H.
Followed by Definition 1,the numerical asymptotical stability region can be denoted by S.

Lemma 4%

Let o(x) = 1/x—1/(e* — 1) ,then ¢(x) is a decreasing function and p(— o) =1, ¢(0)
= 1/2 and p(+0) = 0.

Lemma 5% For allm > |a| .

(I+a/Gmn—=0))" =e il and only if 1/2 << O0<1fora >0, o(—1) <O 1fora<<0;

(O+a/Gm—"0a))" < e ifand only Hf 0 <C O 1/2fora << 0,00 ¢(1) fora>0,
where p(a) = 1/x—1/(e" — 1) .

Lemma 6 For allm > M ,

(1) A+4+a/tm—0a))" = e‘if and only if 1/2 <0< 1fora >0, pla/M) <0< 1fora<0;

(2) A +a/tm—0a))" < e ifand only if 0 <L O 1/2fora << 0, 0 << 0<< pla/M) fora >0,
where p(2) = 1/x—1/(e" — 1) .

Proof (i) From (1 +a/(Gm —6a))" = e“we have @ =m/a—1/(e*’" —1) . So for allm > M ,in view of
Lemma 4 we obtain 1/2 <C0<C1fora >0, p(a/M) << 0 < 1fora << 0. The case of (ii) can be proved in
the same way.

Lemma 7 Assume that inequality p <{e* < q holds for all @ 7 0 , then inequality p <Co” <Cq also holds
if any of the following conditions is satisfied:

(D1/2<<0<1or0<<O0<< (1) form =Manda >0 ;

(2) p(— 1D <0< lor0<<0<1/2form = Manda <0,
where p(z) = 1/x—1/(e" — 1) .

Proof For alla 7 0 ,there exists aM, >0 ,whenm > M, ,the range of «" has the following two cases

e < a" <qgand p <<a" < e.
Lete = min{qg—e“,e* — p} ,if e* < a” < q ,there is
M = inf{m:mln(1 +1/m/a—80)) <In(e* +e)} +1,
such that a” —e” < e ,which implies that «” < g wheneverm = M, . Let M; = max{| a | ,M; } ,then for all
m = M, ,{from Lemma 6 we obtain that the Inequality ¢* <{ o < g holds under the conditions 1/2 <0< 1
fora>0and p(—1) <0< 1fora<<O.

If p<<a"<e* ,thereisM, = inf{m:(1+1/(m/a—0))" > ¢ —e}+ 1 such thata” —e* >—¢ ,which
implies that " > p wheneverm = M, .

Let M, = max{| a | .M, } .then for allm = M, ,from Lemma 6 we have that the Inequalityp << " <
¢ holds under the conditions 0 <C 0 <C 1/2 fora << 0 and 0 << 0 << ¢(1) fora > 0. Set M = max{M, .M.} ,
then the proof is complete.

We will investigate which condition leads to H & S . For convenience, we divide the region H into five
parts

H, = {(0,b,¢) € H:a=0},H, = {(a,b,c) € H\Hy:a > 0,(a+b+c)(a+b—c) >0},

(asbsc) € H\H,:a < 0,

HZ:{(a,b,c)6H\Hoga>O,(a+b+c)(a+b*c')<O}vH3:{ ) . }’

a+b+c)lat+b—c) >0
H, = {(a,b,¢e) € H\H;:a <0,(a+b+c)(a+b—c)<0}.
In the similar way,we denote
Se = {(0,6,¢) € S:a =0},S, = {(asbsc) € S\S;:a >0,(a+b+)(a+b—c) >0},
(asb,c) € S\S;:a <0,
Sg—{(a,b,c)ES\SO:a>O,(a+b+c)(a+bc‘)<0}’53—{ o | }
a+b+dla+b—c) >0

S, = {Casbsc) € S\Sy:a <<0.,(a+b+c)(a+b—c)<0}.
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It is easy to see that H =U/"_ H;, . S =U/.,S: and

HNH =0. SNS =0 HOS =0, i#jvivj=0.1.2.3.4.
Therefore,we can conclude that H & S is equivalent to H; & S;,i = 0,1,2,3,4.
Ifa >0 ,(2) becomes

{(a—i-b—i-c)((bca)(a+b+c')e“)>0, (22
(at+b+)b+c—a)—(at+b+c)e) > 0.
(16) yields
a+b+D(b—c—a)—(a+b+c)a") >0,
{(a—i-b—i—c)((b—’—cfa)*(a-ﬁ—b-ﬁ—c)a”’)>O. 5
Ifa << 0,(2) turns into
(at+b+)Wat+b—c)e* —(b—c—a)) >0,
{(a+b+6)((a+b+c)e“*(1)+C*a))>O. (zh
(16) gives
(25)

at+b+olat+b—c)a" —(b—c—a)) >0,
{(a+b+c)((a+b+c)a”’ —(b+c—a)) >0.
Theorem 6 The stability regions have the following five relationships
Hy & Sjifandonly if 0<CO0<{1; H & S;ifandonly f 00T (1)  H, &S, if1/2<<0<1or0
<0< () ; H, S S, ifandonly if o(—1) <0< 1; H &S, ifop(—1) <0< 1or0<<0<1/2 ,where
olx) = 1/x—1/("— 1.
Proof (i) Noticing that (3) and (17) are the same in form,so H, & S, holds for all § with 0 <C < 1.
(i1) By the notation of H, and S,,(22) yields

B b—c—a b+c—a
S eta C Tbhieta
(23)can be changed into
’Y’ _ /H b+c_a
<1*6—0— </J—0—c—|—a'

Therefore, H, © S, if and only if " <C ¢ ,s0 by Lemma 5 we have H, & S, if and only if 0 <C 0 << (1) .
(iii) By the notation of H, and S, ,(22) becomes

b—c— b4+c—a
b—c+a i <b+c+a'
(23) gives
b—c—a ,,, b+c—a
/)—c+a<a <b+c+a'
Letp:b_c_a bte— 4, then by Lemma 7 we haveH, = S, if 1/2 << 0<C1o0r0 <0< (1) .

bfc—i-a’q b-+c+a

(iv) and (v) can be proved in the similar way.

4 Preservation of oscillation

Definition 2 We call the 0-methods preserve oscillation of Eq. (1) if Eq. (1) oscillates, which implies
that there is an h, such that Eq. (7) oscillates for h < h, .

By some easy inductions we have the next lemma.

Lemma 8 For allm > |a| and0 € [0.1] ,

(1)—a—1<—aa"/(a" —1) <—aand 0 < a/(a" —1) < 1lfora>0;

(2)—1<<—aa"/(a" —1) <O0Oand—a <a/(a"—1) <—a-+1fora<<O.

The following lemma can be naturally obtained from Theorem 2.

Lemma 9 Eq. (1) is oscillatory if any of the following conditions is satisfied

(HLb+c<<—ae'/(e"—1) yb=—aandc >a/(e* —1) fora >0 ;

(D) b+c<<—ae/(e"—1) ,b=0andc >a/(e* —1) for—1n2 << a <<0;
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D b+c<<—ae'/(e"—1) yb=0andc >a/(e"—1) yb+c>0,b<—ae"/(e" —1) and c <— a for
a<<—1In2.
By Theorem 5,Lemmas 8 and 9 the following corollary is obtained.

Corollary 2 For all m > |a| ,under the condition of Lemma 9,if
ae“ aa™ a a
— <— >
eu_l\ am_loreu_l/am_l

holds,then the numerical solutions inherit oscillation of the analytic solutions of Eq. (1).

So we have the first result for preservation of oscillation.

Theorem 7 The numerical solutions inherit oscillation of the analytic solutions of Eq. (1) if one of the
following conditions holds

(H1/2<o0<1fora>0;

(2)0<<O0<1/2fora<<O.

Proof From Corollary 2 we obtain that the numerical solutions inherit oscillation of the analytic solu-
tions of Eq. (1) if " = ¢* fora > 0 and a” << ¢“ fora << 0. Then by Lemma 5 the proof is finished.

Furthermore,from Theorem 2 we can easily obtain the following lemma.

Lemma 10 Eq. (1) is oscillatory if any of the following conditions is satisfied

(Ob+c<—a—1,b>—ae*/(e* —1) andc = 11fora > a; ;

Db+ c<<—a—1,b>—ae*/(¢* —1)andc=1,b+c>—ae‘/(e* —1) ,b<—a—1,c<a/(e —
D for0<<a<a ;

Db+ c<—1,b>—ae'/(e*—1)andc=>—a+1,b+c>—ae' /(" —1) ,b<—1,c<a/(e"—1
fora <0,

where a, is the positive root of equatione* —2a —1 = 0.

By Theorem 5,L.emmas 8 and 10 the following corollary is got.

Corollary 3 For all m >| a | . under the condition of Lemma 10,if

a
ae aa a a
— =— or <
a __ m __ a __ m o
e 1 a 1 e 1 a 1

holds,then the numerical solutions inherit oscillation of the analytic solutions of Eq. (1).

So we have the second result for preservation of oscillation.

Theorem 8 The numerical solutions inherit oscillation of the analytic solutions of Eq. (1) if one of the
following conditions holds (1) 0 << 0 <C ¢(1) fora >0 ;(2) o(— 1) <0< 1fora << 0 ,where p(x) = 1/x
—1/Ce" —1).

Proof From Corollary 3 we obtain that the numerical solutions inherit oscillation of the analytic solu-

tions of Eq. (1) if " << e fora > 0 and a” = ¢“ fora << 0. Then by Lemma 5 the proof is completed.

Since lima” = ¢* so

li 4  — 4 lim(— a”  ___ae’ ’

ml*llloqoam —1 et — 1 ml}»l}c( a” — 1) et — 1
Lete = minf |6+ -%" | le— 4 | | Lotet 2 M = inflm: | L= | <&@ =Dy

6“*1 ’ 6“*1 ’ﬁ e“il ’ { . 0(]”*1 a }
and M = max{| a | sM" } such that
a a aa” ae®
(1’”*] eu71‘<€’ ‘ ar;171+61171‘<€’

so the third result for preservation of oscillation is as follows.

Theorem 9 The numerical solutions inherit oscillation of the analytic solutions of Eq. (1) if one of the
following conditions holds (1) 0 <L << (1) or1/2<CO0<1fora>0andm =M ;(2) p(—1) <O 1or
0L 1/2fora<<Oandm =M ,wherep(x) = 1/x—1/(e" — 1) .

Proof It is easy to know that the range of a/(a” —1) has two cases for allm =M , a/(a" —1) < a/(e*
— 1) and (D a/(@" — 1) = a/(e* — 1) .
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The first case implies that «” = ¢“ fora > 0 and " < ¢* for a <C 0 ,then by Lemmas 5,6 we have that
the numerical solutions inherit oscillation of Eq. (1) if 1/2 <0< 1fora > 0and 0 << 0 < 1/2fora <<O0.

The second case can be obtained similarly. The proof is complete.

Remark 1 It is easy to see that u, = u(¢,) fora = 0 ,so the preservation of oscillation of the 6-meth-

ods is obvious whena = 0.

5 Numerical simulations

We propose some examples to test the above main results.

Consider the equation

U () = u() +ut]) — 3ul2 ), u(0) = 1. (26)

[l‘ +1 ]

Let m =100 and@= 0.5 ,it is can be seen that the condition (16) is satisfied fora =1,6=1,c=—3.In Fig-
ure 1,we draw the figure of the numerical solution of Eq. (26) ,from this figure we know that the numerical
solution of Eq. (26) is asymptotically stable,which is in agreement with Theorem 4.
3 . . ,

2r Al ]

0 5 10 15 20 25 0 5 10 15 20 25
t t
Figure 1 The numerical solutions of Eq. Figure 2 The numerical solutions of Eq.
(26) withd = 0.5 and m = 100 (27) withd = 0.4 and m = 100

For the equation

t+1
2

We can test thata =1,b =—1,c=—3 , m = 100 and § = 0. 4 satisfy the third condition in (20). In Fig-

W (1) = u(t) —u[t]) —3u<2[ ]>, w(0) = 1. Q2N

ure 2,we draw the figure of the numerical solution of Eq. (27), we can see that the numerical solution of
Eq. (27) is oscillatory, which coincides with Theorem 5.
We consider the equation

t+1

W (1) = u() +1.5a([] —3u<2[ ]>, u(0) =1, (28)

it is easy to see thata = 1,6 =1.5,c =—3 ., m = 100 > M = 2 and § = 0. 4 satisfy (iii) in Theorem 6. We
gave the analytic solutions and the numerical solutions of Eq. (28) in Figure 3,we can easily see that the

numerical solutions inherit the stability of analytic solutions of Eq. (28) ,which in accordance with Theorem 6.
1 T T T T 1

T T T T

0.8f @ 0.8} ®
< 0.6—\ 1 . os6f .
= 04f { = 0.4 i
02} K 1 0.2} 1
0 ‘ s ' s 0 - s ‘ -
0 5 10 15 20 25 5 10 15 20 25
t t

Figure 3 The analytic solutions (a) and the numerical solutions (b) of Eq. (28) withd = 0. 4 and m = 100

Consider the equation
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U () =—u(t) —u[t]D + u(Z[

t+1

]>, u(0) = 1.

29

Letm = 100 and @ = 0. 7 ,it can be checked thata =— 1,6 =— 1,c = 1 satisfy (iv) in Theorem 6. In

Figure 4,we draw the figures of the analytic solution and the numerical solution of Eq. (29),respectively,

we can see that the d -methods preserve the stability of Eq. (29),which is in agreement with Theorem 6.

—

(a) (b)
_ -05) -0.5[
1 <
0l 1 0f-
-05 ‘ : ‘ ' -05 : ‘ :
0 5 10 15 20 25 10 15 20 25
t t
Figure 4 The analytic solutions (a) and the numerical solutions (b) of Eq. (29) withd = 0.7 and m = 100
For the equation
, t+1
0 :—uu)—o.su(m)+u(2[T]>, u(0) =1, (30)
it is not difficult to see thata =—1,b6 =—0. 8,c = 1 satisfy (iii) in Lemma 9. Letm = 100 and 0 = 0.4 . We

gave the analytic solutions and the numerical solutions of Eq. (30) in Figure 5. It shows that the numerical

solutions inherit the oscillation of analytic solutions of Eq. (30),which coincides with Theorem 7.

7 Iy : ,
\ (a) \ (b)
05} -05
1 =
413 \// — — oF S —
05 ; . J ‘ -05 . . .
0 5 10 15 20 25 0 10 15 20 25
t t
Figure 5 The analytic solutions (a) and the numerical solutions (b) of Eq. (30) withd = 0. 4 and m = 100
Furthermore,for the equation
, t+1
{ @O = a0+ D) — 5uC2] + P euto) = 1. 3D
We can verify that the coefficientsa = 1,0 = 1,c =— 5 satisfy (iii) in Lemma 10. Let m = 100 > M =

2 and @ = 0.8 ,in Figure 6,we draw the figures of the analytic solution and the numerical solution of Eq.
(31) ,respectively, we can see that the # -methods preserve the oscillation of Eq. (31), which is in agreement

with Theorem 9.

2000 2000 T
(a) (b)
1000 1000 |
e of———— R ||
=1 5
~1000} -1000}
-2000f+ -2000 | 1
~3000 ; . s 3 , ‘ ‘
0 5 10 15 20 25 0000 10 15 20 25
t t
Figure 6 The analytic solutions (a) and the numerical solutions (b) of Eq. (31) withd = 0. 8 and m = 100

The other results can be tested in the same way. All numerical results show good agreement with our

theoretical results.

6 Conclusions

In this paper,we consider the numerical properties of § -methods for a special kind of functional differ-
ential equations. Some conditions for the stability and oscillation of the numerical solution are given. The
conditions that the § -methods preserve the stability and oscillations of the analytic solutions are obtained.
The numerical examples show that the § -methods are suitable and effective for solving this kind of equa-

tion. We will consider the multidimensional case and the linear multistep methods in our further work.
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